The convergence of network computing and telecommunications

David G. Messerschmitt
University of California at Berkeley
Terminology

Applications

Video conferencing, voice and electronic mail, WWW browsing, etc.

Services

Audio, video, payment, directory, privacy keys, etc.

Bitways

ATM, IP, wireless, etc..

Realizing the Information Future: The Internet and Beyond, Nat. Res. Council
Telecommunications-computing confusion

- Infrastructure blurring
 - Data, audio, video in ATM network
 - Data, audio, video in desktop computer

- Applications blurring
 - Home banking by DTMF and voice response
 - Home banking by desktop computer and modem or Internet
Types of applications

- User-to-user
- User-to-information server
- User-to-user with information server
User-to-information server example

World-wide web browser
User-to-user examples

Shared whiteboard

Shared editor
Taxonomy of networked applications

Immediate
- Video on demand
- WWW browsing

Deferred
- File transfer

User-to-information server

User-to-user
- Telephony
- Video conference
- Electronic mail
- Voice mail
Two architectures

User-to-information server

User-to-user

User-to-user
Two architectures for user-to-user applications

Computer worldview

Client

Client

Server

Telecom worldview

Peer

Peer
Vertical to horizontal integration
Advantages of horizontal integration

- **Services and bitway providers:**
 - Administration and economies of scale

- **Independent application developer**
 - Economically significant market built on existing infrastructure

- **User**
 - Multimedia applications
 - Diversity of applications
 - Single services and bitway access provider
The open horizontal interface

- Applications
- Services
- Bitways

- Operating system & telephone API
- Internet protocol (IP) & QoS
- Async. transfer mode (ATM)
More layers emerging

- Applications
 - Application components
 - E.g. OpenDoc, ActiveX
 - Middleware services
 - E.g. CORBA
 - Network services
 - Bitways
Information appliances

Captures a turnkey stovepipe application snapshot in one “easy-to-use” product e.g. WebTV, Nokia Comunicator
Obstacles to innovation

<table>
<thead>
<tr>
<th>Client-server</th>
<th>All users possessing the client application immediately benefit fully</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peer-to-peer</td>
<td>Users possessing the peer application benefit only to the extent that there are other peers with an interoperable application</td>
</tr>
</tbody>
</table>

Network externality
Transportable computation

- Transport not only data, but also computation across the network

- Primary impacts:
 - Scalability
 - Interoperability
Network distribution

Slow distribution is replaced by distribution of the client application over the network itself.
Virtual machine interface

- Applications
- Virtual machine
- Operating system

WWW browser
Java bytecode interpreter
Telescript
UNIX, MacOS, Win95
Dynamic deployment: client-server

Functionality is invoked during a session by dynamically distributing executable code during the session itself.
Applet execution

Source code

Compiler

Platform-independent bytecode

Languages:
- Tcl
- Telescript
- Java

Bytecode virtual machine

PC, Mac, PDA, telephone, etc

Client

Stored on server

Dynamic deployment
Example Java applet

Nuclear reactor simulation
Advantages

- **Client-server:**
 - No functional advantage over, say X
 - Reduced latency
 - Scalability

- **Peer-to-peer**
 - Bypasses network externality
Network externality problem is avoided by deploying the peer application during establishment, or dynamically during the session.
Java-to-Share

- Helper application for standard Java-enabled WWW browser
- Turns client-server WWW browser into platform for user-to-user applications in peer-to-peer architecture
- Peers need not have application software in advance
Java-to-Share

Netscape browser

Java virtual machine

Java applet

Java applets

Http server

Netscape browser

Java virtual machine
Endpoint: complete convergence