ANNOUNCEMENTS

• HW1 will be considered as extra credit.
• HW3 will be posted tonight, due Tuesday 9/18.
• Monday 3PM (247 Cory) discussion section has room!

OUTLINE

• BJT (cont’d)
 – Transconductance
 – Small-signal model
 – The Early effect
 – BJT operation in saturation mode

Reading: Chapter 4.4.3-4.5
Notes on PN Junctions

• Typically, pn junctions in IC devices are formed by counter-doping. The equations provided in class (and in the textbook) can be readily applied to such diodes if
 - \(N_A \equiv \text{net acceptor doping on p-side} \ \ (N_A - N_D)_{p-side} \)
 - \(N_D \equiv \text{net donor doping on n-side} \ \ (N_D - N_A)_{n-side} \)

\[I_D = I_S \left(e^{qV_D/kT} - 1 \right) \]

\[I_S = A q n_i^2 \left(\frac{D_n}{L_n N_A} + \frac{D_p}{L_p N_D} \right) \]
Transconductance, g_m

- The **transconductance** (g_m) of a transistor is a measure of how well it converts a voltage signal into a current signal.
- It will be shown later that g_m is one of the most important parameters in integrated circuit design.

\[
g_m \equiv \frac{dI_C}{dV_{BE}} \approx \frac{d}{dV_{BE}} \left(I_s \exp \frac{V_{BE}}{V_T} \right)
\]

\[
g_m = \frac{1}{V_T} I_s \exp \frac{V_{BE}}{V_T}
\]

\[
g_m = \frac{I_C}{V_T}
\]

\[
V_T \approx \frac{kT}{e}
\]
Visualization of Transconductance

- g_m can be visualized as the slope of the I_C vs. V_{BE} curve.
- The slope (hence g_m) increases with I_C.

![Graph showing the relationship between I_C, V_{BE}, and g_m]
Transconductance and I_C

- For a given V_{BE} swing (ΔV), the resulting current swing about I_{C2} is larger than it is about I_{C1}.
 - This is because g_m is larger when $V_{BE} = V_{B2}$.

\[V_{BE} = V_{B2} + \Delta V \]
\[V_{BE} = V_{B2} \]
\[V_{BE} = V_{B1} + \Delta V \]
\[V_{BE} = V_{B1} \]
Transconductance and Emitter Area

- When the BJT emitter area is increased by a factor n, I_S increases by the factor n.
- For a fixed value of V_{BE}, I_C and hence g_m increase by a factor of n.
Derivation of Small-Signal Model

- The BJT small-signal model is derived by perturbing the voltage difference between two terminals while fixing the voltage on the third terminal, and analyzing the resultant changes in terminal currents.
 - This is done for each of the three terminals as the one with fixed voltage.
 - We model the current change by a controlled source or resistor.

\[\Delta V\]
\[\Delta I_B\]
\[\Delta I_C\]
\[\Delta I_E\]
\[V_{CE}\]

\[V_{BE}\]
\[\Delta I_C\]
\[\Delta I_B\]
\[\Delta I_E\]
\[\Delta V\]
Small-Signal Model: V_{BE} Change

V_{CE} is fixed

$\Delta I_C = g_m \Delta V_{BE}$

$\Delta V_{BE} = g_m \Delta V_{BE}$

$\Delta I_B \rightarrow B$

$\Delta I_C \rightarrow C$

$R_{\pi} = \frac{\Delta V_{BE}}{\Delta I_B} = \frac{1}{\beta g_m}$

$Lecture 5, Slide 8$

Prof. Liu, UC Berkeley
Small-Signal Model: V_{CE} Change

• Ideally, V_{CE} has no effect on the collector current. Thus, it will not contribute to the small-signal model.

• It can be shown that V_{CB} ideally has no effect on the small-signal model, either.
Small-Signal Model: Example 1

- The small-signal model parameters are calculated for the DC operating point, and are used to determine the change in I_C due to a change in V_{BE}.

\[I_S = 3 \times 10^{-16} \text{ A} \]
\[\beta = 100 \]
\[I_C = I_S \exp \left(\frac{V_{BE}}{\beta K T} \right) \]
\[I_C = 6.92 \text{ mA} \]

\[V_{BE} = 0.8 \text{ V}, \quad V_T = 26 \text{ mV} \]

\[g_m = \frac{I_C}{V_T} = \frac{1}{3.75 \Omega} \]
\[r_\pi = \frac{\beta}{g_m} = 375 \Omega \]

\[\left[\frac{1}{\Omega} \equiv \text{Siemens} \right] \]
Small-Signal Model: Example 2

• In this example, a resistor is placed between the power supply and collector, to obtain an output voltage signal.

• Since the power supply voltage does not vary with time, it is regarded as ground (reference potential) in small-signal analysis.

\[V_{cc} + V_{cc} = V_{out} \]

\[V_{out} = \frac{1}{1 + g_m r_{\pi}} \]

\[I_{cc} = I_{out} \]

\[V_{cc} = 1.8 \text{ V} \]

\[R_C = 100 \ \Omega \]

\[V_1 = 800 \text{ mV} \]
The Early Effect

• In reality, the collector current depends on V_{CE}:

 – For a fixed value of V_{BE}, as V_{CE} increases, the reverse bias on the collector-base junction increases, hence the width of the depletion region increases. Therefore, the quasi-neutral base width decreases, so that collector current increases.

To minimize this effect: dope base more heavily than collector.
Early Effect: Impact on BJT $I-V$

- Due to the Early effect, collector current increases with increasing V_{CE}, for a fixed value of V_{BE}.

\[I_C = I_S \exp \left(\frac{V_{BE1}}{V_T} \right) \]
Early Effect Representation

\[V_A = \text{Early Voltage} \]

\[(I_S \exp \frac{V_1}{V_T}) \left(1 + \frac{V_X}{V_A} \right) \]
The Early effect can be accounted for, by simply multiplying the collector current by a correction factor.

The base current does not change significantly.
Early Effect and Small-Signal Model

\[r_o \equiv \frac{\Delta V_{CE}}{\Delta I_C} = \frac{V_A}{I_S \exp \frac{V_{BE}}{V_T}} \approx \frac{V_A}{I_C} \]
Summary of BJT Concepts

- **Operation in Active Mode**
 - Reverse biased
 - Forward biased

- **Large-Signal Model**
 - \(I_C = I_S \exp \left(\frac{V_{BE}}{V_T} \right) \)

- **I/V Characteristics**
 - \(I_C = I_S \exp \left(\frac{V_{BE1}}{V_T} \right) \)

- **Small-Signal Model**
 - \(I_C = I_S \exp \left(\frac{V_{BE}}{V_T} \right) \)

- **Early Effect**
 - \(V_{CE} \)

- **Modified Small-Signal Model**
 - \(I_C = \beta \cdot I_S \exp \left(\frac{V_{BE}}{V_T} \right) \)

EE105 Fall 2007 Lecture 5, Slide 17 Prof. Liu, UC Berkeley
BJT in Saturation Mode

- When the collector voltage drops below the base voltage, the collector-base junction is forward biased. Base current increases, so that the current gain (I_C/I_B) decreases.
Large-Signal Model for Saturation Mode

\[I_{S2} \exp \frac{V_{BE}}{V_T} \]

\[D_{BC} \]

\[V_{DE} \]

\[n_{BE} \]

\[I_{S1} \exp \frac{V_{BE}}{V_T} \]

\[V_{BE} \]

\[V_{DE} \]

\[D_{BE} \]

\[I_{S1} \exp \frac{V_{BE}}{V_T} \]
BJT Output Characteristics

- The operating speed of the BJT also drops in saturation.
Example: Acceptable V_{CC} Range

- In order to prevent the BJT from entering very deeply into saturation, the collector voltage must not fall below the base voltage by more than 400 mV.

\[
V_{CC} \geq I_C R_C + (V_{BE} - 400 \text{ mV})
\]
Deep Saturation

• In deep saturation, the BJT does not behave as a voltage-controlled current source.
• V_{CE} is relatively constant.