Lecture 5

ANNOUNCEMENTS
• HW1 will be considered as extra credit.
• HW3 is posted, due Tuesday 9/18

OUTLINE
• BJT (cont’d)
 – Transconductance
 – Small-signal model
 – The Early effect
 – BJT operation in saturation mode

Reading: Chapter 4.4.3-4.5
Transconductance, g_m

- The **transconductance** (g_m) of a transistor is a measure of how well it converts a voltage signal into a current signal.
- It will be shown later that g_m is one of the most important parameters in integrated circuit design.

\[
g_m \equiv \frac{dI_C}{dV_{BE}} \approx \frac{d}{dV_{BE}} \left(I_s \exp \frac{V_{BE}}{V_T} \right)
\]

\[
g_m = \frac{1}{V_T} I_s \exp \frac{V_{BE}}{V_T}
\]

\[
g_m = \frac{I_C}{V_T}
\]
Visualization of Transconductance

- g_m can be visualized as the slope of the I_C vs. V_{BE} curve.
- The slope (hence g_m) increases with I_C.

![Diagram showing I_C vs. V_{BE} with $g_m \Delta V$ and ΔV indicating the slope and the change in voltage respectively.](image)
Transconductance and I_C

- For a given V_{BE} swing (ΔV), the resulting current swing about I_{C2} is larger than it is about I_{C1}.
 - This is because g_m is larger when $V_{BE} = V_{B2}$.
Transconductance and Emitter Area

- When the BJT emitter area is increased by a factor n, I_S increases by the factor n.

→ For a fixed value of V_{BE}, I_C and hence g_m increase by a factor of n.

![Diagram](image.png)
Derivation of Small-Signal Model

• The BJT small-signal model is derived by perturbing the voltage difference between two terminals while fixing the voltage on the third terminal, and analyzing the resultant change in current.
 – This is done for each of the three terminals as the one with fixed voltage.
 – We model the current change by a controlled source or resistor.
Small-Signal Model: V_{BE} Change

\[\Delta I_C = g_m \Delta V_{BE} \]

\[\Delta I_C = I_s \exp \left(\frac{V_{BE} + \Delta V_{BE}}{V_T} \right) \]

\[\Delta V_{BE} = g_m \Delta V_{BE} \]

\[\Delta V_{BE} = \pi \]

\[\Delta V_{BE} = g_m \pi \]

\[\Delta V_{BE} = r_{\pi} \]

\[\Delta V_{BE} = g_m \pi \]
Small-Signal Model: V_{CE} Change

- Ideally, V_{CE} has no effect on the collector current. Thus, it will not contribute to the small-signal model.
- It can be shown that V_{CB} ideally has no effect on the small-signal model, either.
The small-signal model parameters are calculated for the DC operating point, and are used to determine the change in \(I_C \) due to a change in \(V_{BE} \).

\[
g_m = \frac{I_C}{V_T} = \frac{1}{3.75 \Omega}
\]

\[
r_\pi = \frac{\beta}{g_m} = 375 \Omega
\]
Small-Signal Model: Example 2

- In this example, a resistor is placed between the power supply and collector, to obtain an output voltage signal.

- Since the power supply voltage does not vary with time, it is regarded as ground (reference potential) in small-signal analysis.
The Early Effect

- In reality, the collector current depends on V_{CE}:
 - For a fixed value of V_{BE}, as V_{CE} increases, the reverse bias on the collector-base junction increases, hence the width of the depletion region increases. Therefore, the quasi-neutral base width decreases, so that collector current increases.
Early Effect: Impact on BJT $I-V$

- Due to the Early effect, collector current increases with increasing V_{CE}, for a fixed value of V_{BE}.

\[I_C = I_S \exp \left(\frac{V_{BE_1}}{V_T} \right) \]
Early Effect Representation

\[I_S \exp \left(\frac{V_1}{V_T} \right) \left(1 + \frac{V_X}{V_A} \right) \]
The Early effect can be accounted for, by simply multiplying the collector current by a correction factor. The base current does not change significantly.
Early Effect and Small-Signal Model

\[r_o \equiv \frac{\Delta V_{CE}}{\Delta I_C} = \frac{V_A}{I_s \exp \frac{V_{BE}}{V_T}} \approx \frac{V_A}{I_C} \]
Summary of BJT Concepts

Operation in Active Mode

Large-Signal Model

I/V Characteristics

Small-Signal Model

Early Effect

Modified Small-Signal Model
BJT in Saturation Mode

- When the collector voltage drops below the base voltage, the collector-base junction is forward biased. Base current increases, so that the current gain \((I_C/I_B)\) decreases.
Large-Signal Model for Saturation Mode

![Diagrams](image-url)
BJT Output Characteristics

- The operating speed of the BJT also drops in saturation.
Example: Acceptable V_{CC} Range

- In order to prevent the BJT from entering very deeply into saturation, the collector voltage must not fall below the base voltage by more than 400 mV.

\[V_{CC} \geq I_C R_C + (V_{BE} - 400 \text{ mV}) \]
Deep Saturation

- In deep saturation, the BJT does not behave as a voltage-controlled current source.
- V_{CE} is \simconstant.