Review

- Protocol suites allow heterogeneous networking
- Another form of principle of abstraction
- Protocols \(\Rightarrow\) operation in presence of failures
- Standardization key for LAN, WAN

- Integrated circuit (“Moore’s Law”) revolutionizing network switches as well as processors
- Switch just a specialized computer
- Trend from shared to switched networks to get faster links and scalable bandwidth

Magnetic Disks

- Purpose:
 - Long-term, nonvolatile, inexpensive storage for files
 - Large, inexpensive, slow level in the memory hierarchy (discuss later)

Disk Device Terminology

- Several platters, with information recorded magnetically on both surfaces (usually)
- Bits recorded in tracks, which in turn divided into sectors (e.g., 512 Bytes)
- Actuator moves head (end of arm) over track (“seek”), wait for sector rotate under head, then read or write

Disk Device Performance

- Disk Latency = Seek Time + Rotation Time + Transfer Time + Controller Overhead
 - Seek Time? depends no. tracks move arm, seek speed of disk
 - Rotation Time? depends on speed disk rotates, how far sector is from head
 - Transfer Time? depends on data rate (bandwidth) of disk (bit density), size of request
Data Rate: Inner vs. Outer Tracks

- To keep things simple, originally same # of sectors/track
 - Since outer track longer, lower bits per inch
- Competition decided to keep bits/inch (BPI) high for all tracks ("constant bit density")
 - More capacity per disk
 - More sectors per track towards edge
 - Since disk spins at constant speed, outer tracks have faster data rate
- Bandwidth outer track 1.7X inner track!

Disk Performance Model /Trends

- Capacity: + 100% / year (2X / 1.0 yrs)
 - Over time, grown so fast that number of platters has reduced (some even use only 1 now!)
- Transfer rate (BW): + 40%/yr (2X / 2 yrs)
- Rotation+Seek time: ~ 8%/yr (1/2 in 10 yrs)
- Areal Density
 - Bits recorded along a track: Bits/Inch (BPI)
 - # of tracks per surface: Tracks/Inch (TPI)
 - We care about bit density per unit area Bits/Inch²
 - Called Areal Density = BPI x TPI
- MB/S: > 100%/year (2X / 1.0 yrs)
 - Fewer chips + areal density

Historical Perspective

- Form factor and capacity drives market, more than performance
- 1970s: Mainframes ⇒ 14" diam. disks
- 1980s: Minicomputers, Servers ⇒ 8", 5.25" diam. disks
- Late 1980s/Early 1990s:
 - Pizzabox PCs ⇒ 3.5 inch diameter disks
 - Laptops, notebooks ⇒ 2.5 inch disks
 - Palmtops didn’t use disks, so 1.8 inch diameter disks didn’t make it

State of the Art: Barracuda 7200.7 (2004)

- 200 GB, 3.5-inch disk
- 7200 RPM; Serial ATA
- 2 platters, 4 surfaces
- 8 watts (idle)
- 8.5 ms avg. seek
- 32 to 58 MB/s Xfer rate
- $125 = $0.625 / GB

Historical Perspective

- Form factor and capacity drives market, more than performance
- 1970s: Mainframes ⇒ 14" diam. disks
- 1980s: Minicomputers, Servers ⇒ 8", 5.25" diam. disks
- Late 1980s/Early 1990s:
 - Pizzabox PCs ⇒ 3.5 inch diameter disks
 - Laptops, notebooks ⇒ 2.5 inch disks
 - Palmtops didn’t use disks, so 1.8 inch diameter disks didn’t make it

1 inch disk drive!

- 2004 Hitachi Microdrive:
 - 1.7" x 1.4" x 0.2"
 - 4 GB, 3600 RPM, 4-7 MB/s, 12 ms seek
 - Digital cameras, PalmPC
- 2006 MicroDrive?
 - 16 GB, 10 MB/s!
 - Assuming past trends continue

Use Arrays of Small Disks…

- Katz and Patterson asked in 1987:
 - Can smaller disks be used to close gap in performance between disks and CPUs?

Conventional:

- 4 disk designs
- 3.5" 5.25" 10" 14"

Low End

High End

Disk Array:

- 1 disk design
- 3.5"
Replace Small Number of Large Disks with Large Number of Small Disks! (1988 Disks)

<table>
<thead>
<tr>
<th>Disk Type</th>
<th>Capacity</th>
<th>Volume</th>
<th>Power</th>
<th>Data Rate</th>
<th>I/O Rate</th>
<th>MTTF</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM 3390K</td>
<td>20 GBytes</td>
<td>97 cu. ft.</td>
<td>3 KW</td>
<td>15 MB/s</td>
<td>600 I/Os/s</td>
<td>250 Khrs</td>
<td>$250K</td>
</tr>
<tr>
<td>IBM 3.5” 0061</td>
<td>320 MBytes</td>
<td>0.1 cu. ft.</td>
<td>11 W</td>
<td>1.5 MB/s</td>
<td>55 I/Os/s</td>
<td>50 Khrs</td>
<td>$2K</td>
</tr>
<tr>
<td>x70</td>
<td></td>
<td></td>
<td></td>
<td>120 MB/s</td>
<td>3900 I/Os/s</td>
<td></td>
<td>$150K</td>
</tr>
</tbody>
</table>

Capacity, Volume, Power, Data Rate, I/O Rate, MTTF, Cost.

Disk Arrays potentially high performance, high MB per cu. ft., high MB per KW, but what about reliability?

Array Reliability

- Reliability - whether or not a component has failed
 - measured as Mean Time To Failure (MTTF)
- Reliability of N disks
 = Reliability of 1 Disk ÷ N
 (assuming failures independent)
- 50,000 Hours ÷ 70 disks = 700 hour
- Disk system MTTF: Drops from 6 years to 1 month!
- Disk arrays too unreliable to be useful!

Redundant Arrays of (Inexpensive) Disks

- Files are "striped" across multiple disks
- Redundancy yields high data availability
 - Availability: service still provided to user, even if some components failed
- Disks will still fail
- Contents reconstructed from data redundantly stored in the array
 ⇒ Capacity penalty to store redundant info
 ⇒ Bandwidth penalty to update redundant info

Berkeley History, RAID-I

- RAID-I (1989)
 - Consisted of a Sun 4/280 workstation with 128 MB of DRAM, four dual-string SCSI controllers, 28 5.25-inch SCSI disks and specialized disk striping software
 - Today RAID is $27 billion dollar industry, 80% nonPC disks sold in RAIDs

"RAID 0": No redundancy

- Assume have 4 disks of data for this example, organized in blocks
- Large accesses faster since transfer from several disks at once

RAID 1: Mirror data

- Each disk is fully duplicated onto its "mirror"
 - Very high availability can be achieved
- Bandwidth reduced on write:
 - 1 Logical write = 2 physical writes
- Most expensive solution: 100% capacity overhead
RAID 3: Parity

- Parity computed across group to protect against hard disk failures, stored in P disk.
- Logically, a single high capacity, high transfer rate disk.
- 25% capacity cost for parity in this example vs. 100% for RAID 1 (5 disks vs. 8 disks).

RAID 4: parity plus small sized accesses

- RAID 3 relies on parity disk to discover errors on read.
- But every sector has an error detection field.
- Rely on error detection field to catch errors on read, not on the parity disk.
- Allows small independent reads to different disks simultaneously.

Bonus: Inspiration for RAID 5

- Small writes (write to one disk):
 - Option 1: read other data disks, create new sum and write to Parity Disk (access all disks).
 - Option 2: since P has old sum, compare old data to new data, add the difference to P:
 \[\text{1 logical write} = 2 \text{ physical reads} + 2 \text{ physical writes to 2 disks} \]
- Parity Disk is bottleneck for Small writes:
 - Write to A0, B1 => both write to P disk.

Bonus: RAID 5: Rotated Parity, faster small writes

- Independent writes possible because of interleaved parity.
 - Example: write to A0, B1 uses disks 0, 1, 4, 5, so can proceed in parallel.
 - Still 1 small write = 4 physical disk accesses.

Peer Instruction

1. RAID 1 (mirror) and 5 (rotated parity) help with performance and availability.
2. RAID 1 has higher cost than RAID 5.
3. Small writes on RAID 5 are slower than on RAID 1.

“And in conclusion…”

- Magnetic Disks continue rapid advance: 60%/yr capacity, 40%/yr bandwidth, slow on seek, rotation improvements, MB/$ improving 100%/yr?
- Designs to fit high volume form factor
- RAID
 - Higher performance with more disk arms per $.
 - Adds option for small # of extra disks.
 - Today RAID is > $27 billion dollar industry, 80% nonPC disks sold in RAIDs; started at Cal.