Review...

- ISA is very important abstraction layer
 - Contract between HW and SW
- Basic building blocks are logic gates
- Clocks control pulse of our circuits
- Voltages are analog, quantized to 0/1
- Circuit delays are fact of life
- Two types
 - Stateless Combinational Logic (&,|,~), in which output is function of input only
 - State circuits (e.g., registers)

Accumulator Example

Want: S=0; for i from 0 to n-1
 S = S + x_i

First try...Does this work?

Nope!
Reason #1... What is there to control the next iteration of the 'for' loop?
Reason #2... How do we say: 'S=0'?

Second try...How about this? Yep!

Register Details...What's in it anyway?

| n instances of a “Flip-Flop”, called that because the output flips and flops betw. 0,1 |
| D is “data” |
| Q is “output” |
| Also called “d-q Flip-Flop”, “d-type Flip-Flop” |
What’s the timing of a Flip-flop? (1/2)

- Edge-triggered d-type flip-flop
 - This one is “positive edge-triggered”
 - “On the rising edge of the clock, the input d is sampled and transferred to the output. At all other times, the input d is ignored.”

What’s the timing of a Flip-flop? (2/2)

- Edge-triggered d-type flip-flop
 - This one is “positive edge-triggered”
 - “On the rising edge of the clock, the input d is sampled and transferred to the output. At all other times, the input d is ignored.”

Administrivia

- Midterm regrades will be done at tonight’s TA mtg and online tomorrow
- Anyone who cannot make the final exam (religious or graduation reasons only) must email me <ddgarcia@cs> with the subject “61C FINAL EXAM” before the start of next week (Monday)

Accumulator Revisited (proper timing 1/2)

Timing...

Accumulator Revisited (proper timing 2/2)

Pipelining to improve performance (1/2)
Pipelining to improve performance (2/2)

Timing…

Finite State Machines Introduction

Finite State Machine Example: 3 ones...

Draw the FSM…

<table>
<thead>
<tr>
<th>PS</th>
<th>Input</th>
<th>NS</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0</td>
<td>00</td>
<td>0</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>01</td>
<td>0</td>
</tr>
<tr>
<td>01</td>
<td>1</td>
<td>00</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>00</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>00</td>
<td>1</td>
</tr>
</tbody>
</table>

“And in conclusion…”

- **We use feedback to maintain state**
- Register files used to build memories
- D-FlipFlops used to build Register files
- Clocks tell us when D-FlipFlops change
 - Setup and Hold times important
- We pipeline big-delay CL for faster clock
- Finite State Machines extremely useful
 - You’ll see them in HW classes (150,152) & 164