Below the Program

- High-level language program (in C)
  ```c
  swap int v[], int k[]
  int temp;
  temp = v[k];
  v[k] = v[k+1];
  v[k+1] = temp;
  }
  ```
- Assembly language program (for MIPS)
  ```assembly
  swap: add $2, $5, 2
  lw $15, 0($2)
  lw $16, 4($2)
  sw $16, 0($2)
  sw $15, 4($2)
  li $31
  ```
- Machine (object) code (for MIPS)
  ```
  000000 00000 00101 00010001000000
  000000 0011000100100000000000
  ```

Logic Design

- Next 2 weeks: we’ll study how a modern processor is built starting with basic logic elements as building blocks.
- Why study logic design?
 - Understand what processors can do fast and what they can’t do fast (avoid slow things if you want your code to run fast!)
 - Background for more detailed hardware courses (CS 150, CS 152)

Logic Gates

- Basic building blocks are logic gates.
 - In the beginning, did ad hoc designs, and then saw patterns repeated, gave names
 - Can build gates with transistors and resistors
- Then found theoretical basis for design
 - Can represent and reason about gates with truth tables and Boolean algebra
 - Assume know truth tables and Boolean algebra from a math or circuits course.
 - Section B.2 in the textbook has a review

Physical Hardware

Let’s look closer...
Transistors 101
- MOSFET
 - Metal-Oxide-Semiconductor Field-Effect Transistor
 - Come in two types:
 - n-type NMOSFET
 - p-type PMOSFET
- For n-type (p-type opposite)
 - If current is NOT flowing in Gate, transistor turns “off” (cut-off) and Drain-Source NOT connected
 - If current IS flowing in Gate, transistor turns “on” (triode) and Drain-Source ARE connected

Gate-level view vs. Block diagram

Signals and Waveforms: Clocks

Signals and Waveforms: Adders

Signals and Waveforms: Grouping

Signals and Waveforms: Circuit Delay
Combinational Logic

- Complex logic blocks are built from basic AND, OR, NOT building blocks we’ll see shortly.
- A *combinational* logic block is one in which the output is a function only of its current input.
- Combinational logic cannot have memory (e.g., a register is not a combinational unit).

Circuits with STATE (e.g., register)

- AND, OR, XOR, NOT, etc.
- Sequential circuits:
 - flip-flops (FFs)
 - registers
 - counters
 - state machines

And in semi conclusion...

- ISA is very important abstraction layer
 - Contract between HW and SW
- Basic building blocks are logic *gates*
- Clocks control pulse of our circuits
- Voltages are analog, quantized to 0/1
- Circuit delays are fact of life
- Two types
 - Stateless Combinational Logic (&, |, ~)
 - State circuits (e.g., registers)

Administrivia - Midterm 2005Sp

- Your TAs and readers stayed up until 4am to get your exams back to you!
- \(\bar{x} = 47 \), Median: 48, \(\sigma \): 14.4

Graph:

- UCB C61C 2005Sp Midterm
 - mean=47, median=48, stddev=14
 - Number of Students (0-100)
 - Score

Administrivia - Midterm 2005Fa

- Your TAs and readers stayed up until 4am to get your exams back to you!
- \(\bar{x} = 45.4 \), Median: 49, \(\sigma \): 13.7

Graph:

- UCB C61C 2005Fa Midterm
 - mean=45.4, median=49, stddev=14
 - Number of Students (0-100)
 - Score

Administrivia

- If you want an exam regrade, simply staple a note to the front of your exam and turn it in to your TA or Dan.
 - We’ll collect them until the end of Monday’s lecture and then regrade all.
 - Remember that your grade can go down.
- Project 1 is graded; you have one week to request a regrade there too...
Accumulator Example

Want: \(S=0; \)
for \(i=0; i<n; i++ \)
\[S = S + X_i \]

First try... Does this work?

Nope!
Reason #1... What is there to control the next iteration of the 'for' loop?
Reason #2... How do we say: 'S=0'?

Second try... How about this? Yep!

Register Details... What's in it anyway?

- \(n \) instances of a “Flip-Flop”, called that because the output flips and flops betw. 0,1
- \(D \) is “data”
- \(Q \) is “output”
- Also called “d-q Flip-Flop”, “d-type Flip-Flop”

What’s the timing of a Flip-flop? (1/2)

- Edge-triggered d-type flip-flop
 - This one is “positive edge-triggered”
 - “On the rising edge of the clock, the input \(d \) is sampled and transferred to the output. At all other times, the input \(d \) is ignored.”

What’s the timing of a Flip-flop? (2/2)

- Edge-triggered d-type flip-flop
 - This one is “positive edge-triggered”
 - “On the rising edge of the clock, the input \(d \) is sampled and transferred to the output. At all other times, the input \(d \) is ignored.”
“And in conclusion...”

- We use feedback to maintain state
- Register files used to build memories
- D-FlipFlops used to build Register files
- Clocks tell us when D-FlipFlops change
 - Setup and Hold times important