Lecture #10 – Instruction Representation II, Floating Point I

2005-10-03

Lecturer PSOE, new dad Dan Garcia

www.cs.berkeley.edu/~ddgarcia

#9 bears win again! ⇒ Marshawn Lynch ran for 107 yds and a TD & Ayoob went 14-20. We won 28-0 and have outscored ‘zona 66-0 the last 2 yrs!

We visit #16 UCLA next week.

calbears.collegesports.com/sports/m-footbl/recaps/100105aaa.html
Review...

• Logical and Shift Instructions
 • Operate on individual bits (arithmetic operate on entire word)
 • Use to isolate fields, either by masking or by shifting back & forth
 • Use **shift left logical**, `sll`, for multiplication by powers of 2
 • Use **shift right arithmetic**, `sra`, for division by powers of 2

• Simplifying MIPS: Define instructions to be same size as data word (one word) so that they can use the same memory (compiler can use `lw` and `sw`).

• Computer actually stores programs as a series of these 32-bit numbers.

• **MIPS Machine Language Instruction:**
 32 bits representing a single instruction

<table>
<thead>
<tr>
<th>R</th>
<th>opcode</th>
<th>rs</th>
<th>rt</th>
<th>rd</th>
<th>shamt</th>
<th>funct</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>opcode</td>
<td>rs</td>
<td>rt</td>
<td></td>
<td></td>
<td>immediate</td>
</tr>
<tr>
<td>J</td>
<td>opcode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>target address</td>
</tr>
</tbody>
</table>
I-Format Problems (0/3)

• Problem 0: Unsigned # sign-extended?
 • `addiu`, `sltiu`, **sign-extends** immediates to 32 bits. Thus, # is a “signed” integer.

• Rationale
 • `addiu` so that can add w/out overflow
 - See K&R pp. 230, 305
 • `sltiu` suffers so that we can have ez HW
 - Does this mean we’ll get wrong answers?
 - Nope, it means assembler has to handle any unsigned immediate \(2^{15} \leq n < 2^{16}\) (i.e., with a 1 in the 15th bit and 0s in the upper 2 bytes) as it does for numbers that are too large. ⇒
• Problem 1:
 • Chances are that addi, lw, sw and slti will use immediates small enough to fit in the immediate field.
 • ...but what if it’s too big?
 • We need a way to deal with a 32-bit immediate in any I-format instruction.
I-Format Problems (2/3)

• Solution to Problem 1:
 • Handle it in software + new instruction
 • Don’t change the current instructions: instead, add a new instruction to help out

• New instruction:
 lui register, immediate
 • stands for Load Upper Immediate
 • takes 16-bit immediate and puts these bits in the upper half (high order half) of the specified register
 • sets lower half to 0s
I-Format Problems (3/3)

• Solution to Problem 1 (continued):
 • So how does \texttt{lui} help us?
 • Example:

\[
\begin{align*}
\text{addi} & \quad \text{\$t0, \$t0, 0xABABCDCD} \\
\text{becomes:} & \\
\text{lui} & \quad \text{\$at, 0xABAB} \\
\text{ori} & \quad \text{\$at, \$at, 0xCDAB} \\
\text{add} & \quad \text{\$t0, \$t0, \$at}
\end{align*}
\]

• Now each I-format instruction has only a 16-bit immediate.
• Wouldn’t it be nice if the assembler would do this for us automatically? (later)
Branches: PC-Relative Addressing (1/5)

• Use I-Format

| opcode | rs | rt | immediate |

• opcode specifies beq v. bne

• rs and rt specify registers to compare

• What can immediate specify?
 • Immediate is only 16 bits
 • PC (Program Counter) has byte address of current instruction being executed; 32-bit pointer to memory
 • So immediate cannot specify entire address to branch to.
Branches: PC-Relative Addressing (2/5)

• How do we usually use branches?
 • Answer: if-else, while, for
 • Loops are generally small: typically up to 50 instructions
 • Function calls and unconditional jumps are done using jump instructions (j and jal), not the branches.

• Conclusion: may want to branch to anywhere in memory, but a branch often changes PC by a small amount
Branches: PC-Relative Addressing (3/5)

• Solution to branches in a 32-bit instruction: **PC-Relative Addressing**

• Let the 16-bit *immediate* field be a signed two’s complement integer to be *added* to the PC if we take the branch.

• Now we can branch $\pm 2^{15}$ bytes from the PC, which should be enough to cover almost any loop.

• Any ideas to further optimize this?
Branches: PC-Relative Addressing (4/5)

• Note: Instructions are words, so they’re word aligned (byte address is always a multiple of 4, which means it ends with 00 in binary).
 • So the number of bytes to add to the PC will always be a multiple of 4.
 • So specify the immediate in words.

• Now, we can branch ± 2^{15} words from the PC (or ± 2^{17} bytes), so we can handle loops 4 times as large.
Branches: PC-Relative Addressing (5/5)

• Branch Calculation:

 • If we don’t take the branch:

 \[PC = PC + 4 \]

 \[PC + 4 = \text{byte address of next instruction} \]

 • If we do take the branch:

 \[PC = (PC + 4) + (\text{immediate} \times 4) \]

• Observations

 - **Immediate** field specifies the number of words to jump, which is simply the number of instructions to jump.

 - **Immediate** field can be positive or negative.

 - Due to hardware, add immediate to (PC+4), not to PC; will be clearer why later in course
Branch Example (1/3)

• MIPS Code:

 Loop: beq $9,$0,End
 add $8,$8,$10
 addi $9,$9,−1
 j Loop

 End:

• beq branch is I-Format:

 opcode = 4 (look up in table)
 rs = 9 (first operand)
 rt = 0 (second operand)
 immediate = ???
Branch Example (2/3)

• MIPS Code:

 Loop: beq $9,$0, End
 addi $8,$8,$10
 addi $9,$9,-1
 j Loop
 End:

• Immediate Field:

 • Number of instructions to add to (or subtract from) the PC, starting at the instruction following the branch.

 • In beq case, immediate = 3
Branch Example (3/3)

• MIPS Code:

```
Loop: beq $9,$0,End
     addi $8,$8,$10
     addi $9,$9,-1
     j    Loop
End:
```

decimal representation:

```
   4  9  0  
```

binary representation:

```
000100 01001 00000 00000000000000011
```
Questions on PC-addressing

• Does the value in branch field change if we move the code?

• What do we do if destination is $> 2^{15}$ instructions away from branch?

• Since it’s limited to $\pm 2^{15}$ instructions, doesn’t this generate lots of extra MIPS instructions?

• Why do we need all these addressing modes? Why not just one?
Administrivia

• Dan’s Wed OH cancelled this week
 • Undergraduate Studies committee meets the same time (unfortunately).

• Homework 1 frozen
Upcoming Calendar

<table>
<thead>
<tr>
<th>Week #</th>
<th>Mon</th>
<th>Wed</th>
<th>Thu Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>#6 This week</td>
<td>MIPS Inst Format II / Floating Pt I</td>
<td>Floating Pt II (No Dan OH)</td>
<td>Floating Pt</td>
</tr>
<tr>
<td>#7 Next week</td>
<td>MIPS Inst Format III / Running Program I</td>
<td>Running Program II (Proj 2 due)</td>
<td>Running Program</td>
</tr>
<tr>
<td>#8 Midterm</td>
<td>Exam</td>
<td>SDS I</td>
<td>SDS</td>
</tr>
<tr>
<td></td>
<td>Midterm week</td>
<td>Sun 2pm Review 10 Evans</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5:30-8:30pm Here! (155 Dwin)</td>
<td></td>
</tr>
</tbody>
</table>
J-Format Instructions (1/5)

• For branches, we assumed that we won’t want to branch too far, so we can specify change in PC.

• For general jumps (j and jal), we may jump to anywhere in memory.

• Ideally, we could specify a 32-bit memory address to jump to.

• Unfortunately, we can’t fit both a 6-bit opcode and a 32-bit address into a single 32-bit word, so we compromise.
J-Format Instructions (2/5)

- Define “fields” of the following number of bits each:

<table>
<thead>
<tr>
<th>6 bits</th>
<th>26 bits</th>
</tr>
</thead>
</table>

- As usual, each field has a name:

<table>
<thead>
<tr>
<th>opcode</th>
<th>target address</th>
</tr>
</thead>
</table>

Key Concepts

- Keep *opcode* field identical to R-format and I-format for consistency.
- Combine all other fields to make room for large target address.
J-Format Instructions (3/5)

• For now, we can specify 26 bits of the 32-bit bit address.

• Optimization:
 • Note that, just like with branches, jumps will only jump to word aligned addresses, so last two bits are always 00 (in binary).
 • So let’s just take this for granted and not even specify them.
J-Format Instructions (4/5)

- Now specify 28 bits of a 32-bit address
- Where do we get the other 4 bits?
 - By definition, take the 4 highest order bits from the PC.
 - Technically, this means that we cannot jump to anywhere in memory, but it’s adequate 99.9999...% of the time, since programs aren’t that long
 - only if straddle a 256 MB boundary
 - If we absolutely need to specify a 32-bit address, we can always put it in a register and use the jr instruction.
J-Format Instructions (5/5)

• **Summary:**
 - New PC = { PC[31..28], target address, 00 }

• Understand where each part came from!

• **Note:** { , , } means concatenation

 { 4 bits , 26 bits , 2 bits } = 32 bit address

 • { 1010, 11111111111111111111111111111111, 00 }

 = 1010111111111111111111111111111100

 • **Note:** Book uses \(|||\)
(for A,B) When combining two C files into one executable, recall we can compile them independently & then merge them together.

A. Jump insts don’t require any changes.
B. Branch insts don’t require any changes.
C. You now have all the tools to be able to “decompile” a stream of 1s and 0s into C!
In semi-conclusion…

• **MIPS Machine Language Instruction**: 32 bits representing a single instruction

<table>
<thead>
<tr>
<th></th>
<th>opcode</th>
<th>rs</th>
<th>rt</th>
<th>rd</th>
<th>shamt</th>
<th>funct</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td></td>
<td>rs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Branches use PC-relative addressing, Jumps use absolute addressing.

• Disassembly is simple and starts by decoding **opcode** field. (more in a week)
Quote of the day

“95% of the folks out there are completely clueless about floating-point.”

James Gosling
Sun Fellow
Java Inventor
1998-02-28
Review of Numbers

• Computers are made to deal with numbers

• What can we represent in N bits?
 • Unsigned integers:
 0 to $2^N - 1$
 • Signed Integers (Two’s Complement)
 $-2^{(N-1)}$ to $2^{(N-1)} - 1$
Other Numbers

• What about other numbers?
 • Very large numbers? (seconds/century)
 \[3,155,760,000_{10} \times 10^9 \]
 • Very small numbers? (atomic diameter)
 \[0.000000001_{10} \times 10^{-8} \]
 • Rationals (repeating pattern)
 \[2/3 = 0.6666666666... \]
 • Irrationals
 \[2^{1/2} = 1.414213562373... \]
 • Transcendentals
 \[e = 2.718..., \pi = 3.141... \]

• All represented in scientific notation
Scientific Notation (in Decimal)

- **mantissa**: 6.02_{10}
- **exponent**: 10^{23}
- **decimal point**
- **radix (base)**

- **Normalized form**: no leading 0s (exactly one digit to left of decimal point)
- **Alternatives to representing $1/1,000,000,000$**
 - **Normalized**: 1.0×10^{-9}
 - **Not normalized**: $0.1 \times 10^{-8}, 10.0 \times 10^{-10}$
Scientific Notation (in Binary)

- Computer arithmetic that supports it called **floating point**, because it represents numbers where the binary point is not fixed, as it is for integers
 - Declare such variable in C as `float`
Floating Point Representation (1/2)

• Normal format: \(+1.xxxxxxxxxxxx_{\text{two}} \times 2^{yyyy_{\text{two}}} \)

• Multiple of Word Size (32 bits)

\[
\begin{array}{cccc}
31 & 30 & 23 & 22 \\
\hline
S & \text{Exponent} & \text{Significand} & 0 \\
1 \text{ bit} & 8 \text{ bits} & 23 \text{ bits} & \\
\end{array}
\]

• \(S \) represents Sign
• Exponent represents \(y \)’s
• Significand represents \(x \)’s

• Represent numbers as small as \(2.0 \times 10^{-38} \) to as large as \(2.0 \times 10^{38} \)
Floating Point Representation (2/2)

• What if result too large? (> 2.0x10^{38})
 • **Overflow**!
 • Overflow ⇒ Exponent larger than represented in 8-bit Exponent field

• What if result too small? (>0, < 2.0x10^{-38})
 • **Underflow**!
 • Underflow ⇒ Negative exponent larger than represented in 8-bit Exponent field

• How to reduce chances of overflow or underflow?
Double Precision Fl. Pt. Representation

- Next Multiple of Word Size (64 bits)

<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>20</th>
<th>19</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Exponent</td>
<td>Significand</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Double Precision (vs. Single Precision)
 - C variable declared as `double`
 - Represent numbers almost as small as 2.0×10^{-308} to almost as large as 2.0×10^{308}
 - But primary advantage is greater accuracy due to larger significand
QUAD Precision Fl. Pt. Representation

• Next Multiple of Word Size (128 bits)
• Unbelievable range of numbers
• Unbelievable precision (accuracy)
• This is currently being worked on
• The current version has 15 bits for the exponent and 112 bits for the significand
• Oct-Precision? That’s just silly! It’s been implemented before…
IEEE 754 Floating Point Standard (1/4)

• Single Precision, DP similar

• Sign bit: 1 means negative
 0 means positive

• Significand:
 • To pack more bits, leading 1 implicit for normalized numbers
 • 1 + 23 bits single, 1 + 52 bits double
 • always true: Significand < 1
 (for normalized numbers)

• Note: 0 has no leading 1, so reserve exponent value 0 just for number 0
IEEE 754 Floating Point Standard (2/4)

• Kahan wanted FP numbers to be used even if no FP hardware; e.g., sort records with FP numbers using integer compares

• Could break FP number into 3 parts: compare signs, then compare exponents, then compare significands

• Wanted it to be faster, single compare if possible, especially if positive numbers

• Then want order:
 • Highest order bit is sign (negative < positive)
 • Exponent next, so big exponent => bigger #
 • Significand last: exponents same => bigger #
IEEE 754 Floating Point Standard (3/4)

- Negative Exponent?
 - 2’s comp? 1.0×2^{-1} v. $1.0 \times 2^{+1}$ ($1/2$ v. 2)

<table>
<thead>
<tr>
<th>$1/2$</th>
<th>0</th>
<th>1111 1111</th>
<th>000 0000 0000 0000 0000 0000 0000</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>0000 0001</td>
<td>000 0000 0000 0000 0000 0000 0000</td>
</tr>
</tbody>
</table>

- This notation using integer compare of $1/2$ v. 2 makes $1/2 > 2$!
- Instead, pick notation 0000 0001 is most negative, and 1111 1111 is most positive

<table>
<thead>
<tr>
<th>$1/2$</th>
<th>0</th>
<th>0111 1110</th>
<th>000 0000 0000 0000 0000 0000 0000</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>1000 0000</td>
<td>000 0000 0000 0000 0000 0000 0000</td>
</tr>
</tbody>
</table>
IEEE 754 Floating Point Standard (4/4)

- Called **Biased Notation**, where bias is number subtract to get real number
 - IEEE 754 uses bias of 127 for single prec.
 - Subtract 127 from Exponent field to get actual value for exponent
 - 1023 is bias for double precision
- Summary (single precision):

<table>
<thead>
<tr>
<th></th>
<th>Exponent</th>
<th>Significand</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 bit</td>
<td>8 bits</td>
<td>23 bits</td>
</tr>
</tbody>
</table>

 \((-1)^S \times (1 + \text{Significand}) \times 2^{(\text{Exponent-127})}\)

- Double precision identical, except with exponent bias of 1023
Peer Instruction

What is the decimal equivalent of the floating pt # above?

| 1 | 1000 0001 | 111 0000 0000 0000 0000 0000 0000 |

1: \(-1.75\)
2: \(-3.5\)
3: \(-3.75\)
4: \(-7\)
5: \(-7.5\)
6: \(-15\)
7: \(-7 \times 2^{129}\)
8: \(-129 \times 2^7\)
Peer Instruction Answer

What is the decimal equivalent of:

```
1  1000 0001  111 0000 0000 0000 0000 0000 0000
S   Exponent    Significand
```

\[(-1)^S \times (1 + \text{Significand}) \times 2^{(\text{Exponent} - 127)} \]

\[(-1)^1 \times (1 + .111) \times 2^{(129 - 127)} \]

\[-1 \times (1.111) \times 2^2 \]

-111.1

-7.5

1: -1.75
2: -3.5
3: -3.75
4: -7
5: -7.5
6: -15
7: -7 \times 2^{129}
8: -129 \times 2^7
“And in conclusion…”

- Floating Point numbers approximate values that we want to use.

- IEEE 754 Floating Point Standard is most widely accepted attempt to standardize interpretation of such numbers
 - Every desktop or server computer sold since ~1997 follows these conventions

- Summary (single precision):

 | 31 30 23 22 0 |
 | S | Exponent | Significand |
 | 1 bit 8 bits 23 bits |

 • \((-1)^S \times (1 + \text{Significand}) \times 2^{(\text{Exponent}-127)}\)

 • Double precision identical, bias of 1023