
CS294-13: Special Topics Lecture #3
Advanced Computer Graphics
University of California, Berkeley Handout Date ???

Global Illumination and the Rendering Equation

Lecture #3: Wednesday, 9 September 2009
Lecturer: Ravi Ramamoorthi
Scribe: Daniel Ritchie

1 Introduction to Global Illumination

Thus far in this course we have mainly considered local illumination; that is, light cast
directly from light sources to surfaces. Needless to say, considering only local illumination
leaves out a large number of visual effects that are critical for generating realistic imagery.

We now turn our attention to global illumination, characterized by multiple bounces of
light between light sources and objects. This allows us to capture a variety of interesting
effects. Some of them, such as shadows, reflections, and refraction, we have already
seen in our discussion of ray tracing (Indeed, ray tracing is a form of global illumination
algorithm, as we will see shortly). Others, such as caustics and color bleeding, are new
(see Figure 1). We will need to develop a more sophisticated rendering framework in
order to capture these effects.

Figure 1: Color bleeding demonstrated in the Cornell Box (left); caustics produced by a
wineglass (right).



2 CS294-13: Lecture #3

Diffuse Inter-reflection/Color Bleeding: Diffuse inter-reflection refers to indirect
light reflected off of diffuse surfaces onto nearby surfaces. In particular, if the diffuse
surfaces have strong coloration, this leads to color bleeding, wherein the color of one
surface appears to leak, or bleed, onto nearby surfaces. The Cornell box, originally
designed by early global illumination researchers at Cornell University, is a classic testing
environment for global illumination algorithms.

Caustics: When light focuses through a dielectric object, it produces a bright spot
known as a caustic. An effect not reproducible by conventional radiosity methods, it has
been the subject of much investigation in the late 1980’s, 1990’s, and even today.

2 Overview

In this lecture, we’ll present a unified theory for all global illumination methods, including
ray tracing, path tracing, and radiosity.

We’ll first review the reflectance equation, then derive the Rendering Equation [Kajiya
86], a more complete description of light transport. This, it turns out, will give us a
unified framework for all of our global illumination algorithms. We’ll then discuss existing
approaches to global illumination as special cases of Kajiya’s Rendering Equation.

We’ll give particular attention to deriving the equations for radiosity, a method for
solving a simplified version of the Rendering Equation by assuming that all surfaces are
perfect Lambertian (diffuse) reflectors. Path tracing, another popular global illumination
algorithm, will be discussed in the next set of lectures.

Figure 2: Local geometry for the reflectance equation.



CS294-13: Lecture #3 3

3 Deriving the Rendering Equation

Recall the reflectance equation (Figure 2):

Lr(x, ωr) = Le(x, ωr) + Li(x, ωi)f(x, ωi, ωr)(ωi · n)

This equation describes the reflected radiance Lr from a surface x in direction ωr

due to incident radiance Li from a single light source. To bring this equation closer to a
global description of light transport, we can first extend it to a sum over all light sources
in the scene:

Lr(x, ωr) = Le(x, ωr) +
∑

Li(x, ωi)f(x, ωi, ωr)(ωi · n)

This, however, is still an oversimplification. The incident irradiance on a surface is
not all due to direct light sources; as we’ve seen, a significant portion of it comes from
light reflected off of other nearby surfaces.

Figure 3: Local geometry for the rendering equation.

To capture this idea, we will generalize our equation. Instead of a sum over light
sources, we can integrate over all solid angles in the visible hemisphere. We also replace
the incident radiance Li with the reflected radiance Lr from some other surface in the
scene:

Lr(x, ωr) = Le(x, ωr) +

∫
Ω

Li(x, ωi)f(x, ωi, ωr) cos θidωi

= Le(x, ωr) +

∫
Ω

Lr(x
′,−ωi)f(x, ωi, ωr) cos θidωi



4 CS294-13: Lecture #3

Light sources can be represented as emissive surfaces, so this equation is now fully
general (see Figure 3).

This equation now globally describes the light transport in a scene, so we ought to be
able to celebrate at this point. However, we’ve also gotten ourselves into a bind. In order
to know the reflected radiance from a surface, we need to know the incident radiance
from the other surfaces in the scene–but in order to know that, we need to know the
reflected radiance from those surfaces, too! Put another way, “In order to know Lr, we
must first know Lr.”

In the equation above, Le and f are known. The crux of the problem lies with the
fact that the unknown quantity Lr is on the left-hand side of the equation and inside
the integral. Fortunately for us, this type of problem has already been the subject of
extensive study. In the mathematics community, it is known as a Fredholm Integral
Equation of the second kind and has the following canonical form:

l(u) = e(u) +

∫
l(v)K(u, v)dv

where l is the unknown, e is known, and K is the kernel of the integral equation. For
the inquisitive, more information is available here.

4 Solving the Rendering Equation

The Rendering Equation seems impenetrable as we’ve currently written it. Let’s apply
some linear operator theory to make things more manageable.

4.1 Linear Operator Theory

A linear operator acts on functions the way a matrix acts on vectors. In fact, one can
think of a real-valued function as an infinite-dimensional vector where each “element”
gives the value of the function when it is evaluated at a particular point.

h(u) = (M ◦ f)(u)

Where M is a linear operator and f and h are functions of u.
Just like in the discrete linear algebra with which we’re familiar, basic linearity rules

still hold (they are called linear operators, after all):

M ◦ (af + bg) = a(M ◦ f) + b(M ◦ g)

Many common operations on functions can be expressed as linear operators, including
(and of interest to us) differentiation and integration:

(K ◦ f)(u) =

∫
k(u, v)f(v)dv

http://en.wikipedia.org/wiki/Fredholm_integral_equation


CS294-13: Lecture #3 5

(D ◦ f)(u) =
df

du
(u)

We also define the idenity operator I, analagous to the identity matrix in the discrete
case, to be the operator that takes every function to itself. In other words, I ◦ f = f for
all functions f .

4.2 Solving in Linear Operator Form

With this new knowledge at our disposal, we can rewrite the Rendering Equation in
linear operator form:

L = E +KL

Here, K is the operator representing integration against the kernel (which in our case
is the BRDF f modulated by a cosine factor). E and L represent Le and Lr–not the
functions evaluated at a particular location and direction, but the functions themselves.
If discretized, E becomes the vector of known light sources, L is the unknown reflected
radiance at each measured surface point and outgoing angle, and K (which characterizes
the reflectance of light around the scene) is typically called the light transport matrix.

With this notational simplification in place, it becomes straightforward to solve the
Rendering Equation:

L = E +KL

IL−KL = E

(I −K)L = E

L = (I −K)−1E

= (I +K +K2 +K3 + . . .)E

= E +KE +K2E +K3E + . . .

The last two steps invoke the binomial series expansion of (I −K)−1.
This result, in addition to its simplicity, has an amazingly intuitive physical explana-

tion. The first term, E, gives the emission directly from the light sources. The next term,
KE, describes the direct illumination on surfaces. The following term, K2E, represents
one-bounce indirect lighting. This sequence continues indefinitely, with the (n − 2)nd

term representing n-bounce indirect lighting. If we sum up infinitely many terms in this
sequence, the sum converges to the exact solution of the Rendering Equation (see Figure
4).

4.3 Practical Approaches

Solving the Rendering Equation analytically proves intractably difficult. Instead, ap-
proximation solutions are used in practice.



6 CS294-13: Lecture #3

Figure 4: Accumulating successive bounces of light.

Finite element methods and Monte Carlo methods are the two most popular categories
of algorithms used to solve the Rendering Equation. Finite element methods employ
some form of discretization to reduce the Rendering Equation to a matrix equation.
By contrast, Monte Carlo methods sample possible light paths, generating a statistical
estimate of the appearance of a scene. Radiosity is a commonly-used incarnation of the
finite element method, and ray/path tracing is a popular Monte Carlo approach.

Radiosity initially garnered much attention and excitement in the 1980’s and early
90’s with its ability to render complex diffuse inter-reflection. However, radiosity meth-
ods struggle with capturing complex (angle-dependent) reflectance as the scene must be
discretized in greater than three dimensions. This leads to difficult meshing problems. As
a result, Monte Carlo methods have surpassed radiosity and other finite element methods
in popularity. However, radiosity is still frequently used in fields like architecture, where
the scenes to be rendered typically behave in a mostly diffuse manner, and the ability to
compute illumination once and then render interactive fly-throughs is highly desirable.



CS294-13: Lecture #3 7

5 The (Final) Rendering Equation

As we have thus far derived it, the Rendering Equation has this form:

Lr(x, ωr) = Le(x, ωr) +

∫
Ω

Lr(x
′,−ωi)f(x, ωi, ωr) cos θidωi

In a practical setting, integrating over the visible hemisphere is sometimes cumber-
some or insufficient. It’s much more convenient to integrate over all visible surfaces in
the scene. To make this change of variables, we must first derive the equivalent form of
dωi:

Figure 5: Deriving the surface parameterization of the rendering equation.

Now the Rendering Equation looks like this:

Lr(x, ωr) = Le(x, ωr) +

∫
all visible x′

Lr(x
′,−ωi)f(x, ωi, ωr)

cos θi cos θo

‖x− x′‖2 dA′

This is still cumbersome, as the domain of the integral has become somewhat awk-
ward. We can make it an integral over all surfaces in the scene if we introduce a binary
visibility function V :

Lr(x, ωr) = Le(x, ωr) +

∫
all x′

Lr(x
′,−ωi)f(x, ωi, ωr)G(x, x′)V (x, x′)dA′

G(x, x′) = G(x′, x) =
cos θi cos θo

‖x− x′‖2

In this last step, we’ve also packaged up some terms into G, which we call the geometry
factor. We now have, modulo minor notational differences, the canonical form of the
Rendering Equation.



8 CS294-13: Lecture #3

5.1 The Radiosity Equation

Without much extra work, we can also derive the discretized version of the Rendering
Equation used by the radiosity method.

Given radiosity’s assumption that all surfaces are perfectly diffuse, we can first drop
the angular dependence of all terms in our equation:

Lr(x) = Le(x) + f(x)

∫
S

Lr(x
′)G(x, x′)V (x, x′)dA′

Note that this also allows us to move the BRDF f outside the integral entirely.
Next, by convention, we change variables from radiance and BRDF to radiosity and

albedo:

B(x) = E(x) + ρ(x)

∫
S

B(x′)G(x, x′)V (x, x′)

π
dA′

This equation concisely expresses the conservation of light energy at all points in
space.

Figure 6: Deriving form factors for the radiosity equation.

We now take the plunge and discretize this equation over surfaces i,j in the scene:

Bi = Ei + ρi
∑
j

BjFj→i

The newly introduced term Fj→i is the form factor between i and j. Simply put, it
is the fraction of light energy leaving surface patch j that arrives anywhere on patch i
(see Figure 6). Methods exist to analytically compute form factors between two general
polygons [Schroder & Hanrahan 93], but it is often necessary to compute form factors via



CS294-13: Lecture #3 9

ray tracing or hemicube rasterization when the space between the polygons is occupied
by occluders.

The final step is to formulate this discretized version of the Rendering Equation as a
matrix equation:

Bi = Ei + ρi
∑
j

BjFj→i

Bi − ρi
∑
j

BjFj→i = Ei∑
j

MijBj = Ei Mij = Iij − ρiFi→j

MB = E

where M and E are known and we must solve for B.

6 Conclusion

We’ve derived the Rendering Equation, a major theoretical development in physically-
based rendering and the basis for a unifying framework for all global illumination al-
gorithms. We’ve also seen how existing global illumination methods such as radiosity
and ray tracing can be described as solving special cases of the problem posed by this
equation.

In the next set of lectures, we’ll explore the practical issues of numerically solving the
Rendering Equation with Monte Carlo path tracing methods.


	Introduction to Global Illumination
	Overview
	Deriving the Rendering Equation
	Solving the Rendering Equation
	Linear Operator Theory
	Solving in Linear Operator Form
	Practical Approaches

	The (Final) Rendering Equation
	The Radiosity Equation

	Conclusion

