Advanced Computer Graphics (Fall 2009)

CS 294-13, Lecture 1: Introduction and History

Ravi Ramamoorthi
http://inst.eecs.berkeley.edu/~cs294-13/fa09

Some slides courtesy Thomas Funkhouser and Pat Hanrahan
\qquad

Overview

- CS 294-13, Advanced Computer Graphics
" Prerequisite: Done well in CS 184 or equivalent elsewhere
- Strong interest in computer graphics
" Advanced topics in rendering/geometry/animation
- Background for modern topics
- Areas of current research interest
- Goal is background and up to research frontier
- Aimed at beginning PhD students and advanced ugrads
- Regular lecture class but less rigid than CS 184
- Encourage you to take other CS 28x, 29x in graphics

Scribing

- No books. Lectures online, reading/refs as needed
- We request each student scribe 1 or 2 lectures as notes, and for future reference
- Your e-mail should include 3 scribing prefs
" We will assign scribes by this week and let you know

Demo

- Precomputed relighting: Vase
- Real-Time complex shading
\qquad
- Website http://inst.eecs.berkeley.edu/~cs294-13/fa09
- Co-Instructors James O’Brien and Ravi Ramamoorthi
- First half of class mostly on rendering (Prof. Ramamoorthi)
- Second half of class geometry/animation (Prof. O’Brien)
- Lectures MW 1-2:30pm in Soda 310
- E-mail instructors directly for questions, meetings ...
- Talk to us after class re issues, getting off waitlist etc.
- TODO: E-mail us picture (small 120x160), name, e-mail, scribing prefs (at least 3) by tomorrow

Rendering and Appearance ($1^{\text {st }}$ half)

- Core area in computer graphics
- Efficiently and easily create visual appearance
- Long history (1960s to current time): Variety of old and new topics
- From basic visibility and shading, to global illumination, to image-based rendering, to data-driven appearance and light fields
- Many links to physics, math, computer science

Overview of Course

- Weeks 1-2: Basic ray, path tracing and Monte Carlo global illumination rendering
- Weeks 3-7: Topics of current research interest
" Offline Rendering (efficient sampling): Week 3
- Image-Based Rendering: Week 4
- Real-Time Rendering: Weeks 4, 5
" Data-Driven Appearance Acquisition: Week 6
- Other Topics (Light Fields, Sparse Reconstruction)

Rendering: 1960s (visibility)

- Roberts (1963), Appel (1967) - hidden-line algorithms
- Warnock (1969), Watkins (1970) - hidden-surface
- Sutherland (1974) - visibility = sorting

First Assignment

- In groups of two (find partners)
- Monte Carlo Path Tracer
- If no previous ray tracing experience, ray tracer first.
- See how far you go. Many extra credit items possible, fast multi-dim. rendering, imp. sampling...
- Second assignment: Choice of real-time, precomputation-based and image-based rendering
- Or a research/implementation project of your choice

Ray Tracing Basics

Classic Ray Tracing

Greeks: Do light rays proceed from the eye to the light, or from the light to the eye?

Three ideas about light

1. Light rays travel in straight lines (mostly)
2. Light rays do not interfere with each other if they cross (light is invisible!)
3. Light rays travel from the light sources to the eye (but the physics is invariant under path reversal reciprocity).

Ray Tracing History

Ray Tracing in Computer Graphics

Appel 1968 - Ray casting

1. Generate an image by sending one ray per pixel
2. Check for shadows by sending a ray to the light

Cs3se Leeturn 2
Put Hamahanan, Spring 2009

Heckbert's Business Card Ray Tracer
typedef struct\{double x, y, z]vec,vec U,black,amb=\{,02,.02,.02\};struct sphere\{ vec cen, color;
 .7..3,0...05,1.2,1.,8.,.5,.1,8,.8, 1...3,7,0.,0.,1.2,3..-6.,15.,1...8,1.,7.,0.,0.,0...6,1.5,-3..,-3.,12., 8,1.. $1,5,0,0,0,0, \ldots, 5,1,5$, ;yx; double u,b,tmin, sqrt(), tan(); ;double vdot($A, B)$ vec $A, B ;$;return A, x ${ }^{\prime} B . x+A . y^{\prime} B . y+A . z^{\prime} B . z ;$ vec vcomb (a, A, B) double $a ;$ vec $A, B ; B, x+=a^{*} A \cdot x ; B . y+=a^{\prime} A . y ; B . z+=a^{\prime} A . z ;$ return B;jvec vunit(A)vec $A ;\{$ return vcomb $(1 / /$ sqrt $(\operatorname{vdot}(A, A)), A, b l a c k) ;$;struct sphere intersect ($\mathrm{P}, \mathrm{D})$ vec $\mathrm{P}, \mathrm{D} ;\{$ best $=0 ; \mathrm{tmin}=1 e 30 ; \mathrm{s}=\mathrm{sph}+5$;while($(\mathrm{s}->\mathrm{sph}) \mathrm{b}=\mathrm{vdot}(\mathrm{D}, \mathrm{U}=\mathrm{vcomb}(-1, \mathrm{P}, \mathrm{s} \gg$ cen $)$), $u=b$ " $b-v d o t(U, U)+s->$ rad's $->$ rad,$u=u>0$?sqrt(u): $1 e 31, u=b-u>1 e-7 ? b-u: b+u, t \min =u>=1 e-7 \& \&$ u<tmin?best=s,u: tmin;return best;)Vec trace(level,P,D)vec P,D; (double d,eta,e;vec N,color; struct sphere's, "lifit(llevel--)return black;it(s=intersect(P,D));else return amb;color=amb;eta=
 eta $=1 /$ eta, $d=-\mathrm{d} ; \mathrm{l}=\mathrm{sph}+5$; while($(1->$ sph $) \mathrm{f}((e=|->\mathrm{kl}| \cdot v d o t(\mathrm{~N}, \mathrm{U}=$ vunit $($ vcomb $(-1, \mathrm{P}, \mathrm{l},>$ cen $))))>0$ \& \& intersect $(P, U)==\mid)$ color=vcomb (e,, $\mid>$ color, color $) ; U=s->$ color,color $. x^{*}=U . x ;$ color $\cdot y^{*}=U . y ;$ color. z ${ }^{\prime}=U . z ; e=1$-eta' eta' $\left(1-d^{\prime} d\right)$;return vcomb(s->kt, e>0?trace(levell,P,vcomb(eta,D,vcomb(eta'd sqrt (e),N,black))):black,vcomb(s->ks,trace(level,P,vcomb(2'd,N,D)),vcomb(s->kd, color,vcomb
 $y x++/ 32, U . y=32 / 2 / \tan (25 / 114.5915590261), U=v \operatorname{comb}(255 .$, trace $(3$, black, vunit(U)),black),printf ($\%$ \%.Of \%.Of \%.0fn", U);:/"minray! $/$

Successive Approximation

Rendering Equation (Kajiya 86)

L_{e}

L_{e}

$K \circ L_{e}$

$K \circ K \circ K \circ L_{e}$

CS348B Lecture 13
Pat Hanrahan, Spring 2009

