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Advanced Computer Graphics Advanced Computer Graphics 
(Fall 2009)(Fall 2009)

CS 294, Rendering Lecture 9: 

Frequency Analysis and Signal Processing for Rendering

Ravi Ramamoorthi

http://inst.eecs.berkeley.edu/~cs294-13/fa09

MotivationMotivation

 Signal-processing provides new understanding

 Methods based on (Spherical) Fourier analysis

 Allows understanding of sampling rates (in IBR)

 Frequency-domain algorithms like convolution

 This lecture high-level, mostly conceptual ideas.
 Follow original papers for details, applications

PlenopticPlenoptic SamplingSampling

 Plenoptic Sampling.  Chai, Tong, Chan, Shum 00

 Signal-processing on light field

 Minimal sampling rate for antialiased rendering

 Relates to depth range, Fourier analysis

 Fourer spectra derived for 2D light fields for 
simplicity.  Same ideas extend to 4D
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Light Field Reconstruction
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ObservationObservation

• Motion blur is expensive

• Motion blur removes spatial complexity

Basic ExampleBasic Example

• Object not moving
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• Low velocity,  t  [ 0.0, 1.0 ]
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• High velocity,  t  [ 0.0, 1.0 ]
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Shear in Space-TimeShear in Space-Time
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• Object moving with low velocity
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Shear in Space-TimeShear in Space-Time

• Object moving away from camera
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Basic ExampleBasic Example

• Applying shutter blurs across time
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Basic Example – Fourier DomainBasic Example – Fourier Domain

• Fourier spectrum, zero velocity 
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Basic Example – Fourier DomainBasic Example – Fourier Domain

• Low velocity, small shear in both domains
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Basic Example – Fourier DomainBasic Example – Fourier Domain

• Large shear
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Basic Example – Fourier DomainBasic Example – Fourier Domain

• Non-linear motion, wedge shaped spectra
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Sampling in Fourier DomainSampling in Fourier Domain
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• Sampling produces replicas in Fourier domain

• Sparse sampling produces dense replicas

Fourier DomainPrimal Domain

Standard Reconstruction FilteringStandard Reconstruction Filtering

• Standard filter, dense sampling (slow)

Ωt

no aliasing

Ωx

Fourier Domain
replicas

Standard Reconstruction FilterStandard Reconstruction Filter

• Standard filter, sparse sampling (fast)
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aliasing

Ωx

Sheared Reconstruction FilterSheared Reconstruction Filter

• Our sheared filter, sparse sampling (fast)
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No aliasing!

Fourier Domain

Sheared Reconstruction FilterSheared Reconstruction Filter

• Compact shape in Fourier = wide in primal
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Car SceneCar Scene

Stratified Sampling
4 samples per pixel

Our Method,
4 samples per pixel
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Teapot SceneTeapot Scene
Our Method

8 samples / pix

motion blurred 
reflection

Reflection as ConvolutionReflection as Convolution

 My PhD thesis (A signal-processing framework for 
forward and inverse rendering Stanford 2002)

 Rewrite reflection equation on curved surfaces as 
a convolution with frequency-space product form

 Theoretical underpinning for much work on 
relighting (next lecture), limits of inverse problems

 Low-dimensional lighting models for Lambertian

AssumptionsAssumptions

 Known geometry

 Convex curved surfaces: no shadows, interreflection

 Distant illumination

 Homogeneous isotropic materials

Later precomputed methods: relax many assumptions

ReflectionReflection
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Reflection as Convolution (2D)Reflection as Convolution (2D)
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Signal f(x) Filter g(x)



Output h(u)
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Reflection as Convolution (2D)Reflection as Convolution (2D)
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Frequency: product

Spatial: integral
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Fourier analysis

R. Ramamoorthi and P. Hanrahan “Analysis of Planar Light  Fields from Homogeneous  Convex Curved Surfaces  under 
Distant Illumination” SPIE Photonics West 2001: Human Vision and Electronic Imaging VI pp 195-208
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Spherical HarmonicsSpherical Harmonics
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Insights: Signal ProcessingInsights: Signal Processing

Signal processing framework for reflection
 Light is the signal
 BRDF is the filter
 Reflection on a curved surface is convolution

Insights: Signal ProcessingInsights: Signal Processing

Signal processing framework for reflection
 Light is the signal
 BRDF is the filter
 Reflection on a curved surface is convolution

Filter is Delta function  : Output = Signal

Mirror BRDF :  Image = Lighting
[Miller and Hoffman 84]

Image courtesy Paul Debevec

Insights: Signal ProcessingInsights: Signal Processing

Signal processing framework for reflection
 Light is the signal
 BRDF is the filter
 Reflection on a curved surface is convolution

Signal is Delta function   : Output = Filter

Point Light Source : Images = BRDF
[Marschner et al. 00]
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Roughness

PhongPhong, , MicrofacetMicrofacet ModelsModels

Mirror

Illumination estimation
ill-posed for rough surfaces

Analytic formulae in R. Ramamoorthi and P. Hanrahan
“A Signal-Processing Framework for Inverse Rendering”
SIGGRAPH 2001 pp 117-128

LambertianLambertian

Incident radiance (mirror sphere)

Irradiance (Lambertian)

N
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R. Ramamoorthi and P. Hanrahan “On the Relationship between Radiance and  Irradiance:
Determining the Illumination from Images of a Convex  Lambertian Object”
Journal of the Optical Society of America A 18(10) Oct 2001 pp 2448-2459 

R. Basri and D. Jacobs “Lambertian Reflectance and Linear Subspaces” ICCV 2001 pp 383-390
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9 Parameter Approximation9 Parameter Approximation
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Exact image
Order 2
9 terms

RMS Error = 1%

For any illumination, average 
error < 3% [Basri Jacobs 01]

Ramamoorthi and Hanrahan 01b

Convolution for general materialsConvolution for general materials

Ramamoorthi and Hanrahan 01
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Frequency: product

Spatial: integral
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Spherical 
harmonic analysis

RealReal--Time RenderingTime Rendering

Motivation: Interactive rendering with natural 
illumination and realistic, measured materials 

Ramamoorthi and Hanrahan 02

Normal Map Filtering and RenderingNormal Map Filtering and Rendering

Han, Sun, Ramamoorthi, Grinspun 07
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More Frequency AnalysisMore Frequency Analysis

 Many other papers
 Shadows: Soler and Sillion 98, Ramamoorthi et al. 04
 Gradients: Ward, Heckbert, Arvo, Igehy, Holzschuch, 

Chen, Ramamoorthi, …
 Wavelets: Gortler et al. 93, …, Ng et al. 03

 Full frequency analysis of light transport
 Durand et al. 05
 Space and Angle, generalizes previous work

 Many recent papers in computational imaging 
[Levin et al. 08, 09]


