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Advanced Computer Graphics Advanced Computer Graphics 
(Fall 2009)(Fall 2009)

CS 294, Rendering Lecture 9: 

Frequency Analysis and Signal Processing for Rendering

Ravi Ramamoorthi

http://inst.eecs.berkeley.edu/~cs294-13/fa09

MotivationMotivation

 Signal-processing provides new understanding

 Methods based on (Spherical) Fourier analysis

 Allows understanding of sampling rates (in IBR)

 Frequency-domain algorithms like convolution

 This lecture high-level, mostly conceptual ideas.
 Follow original papers for details, applications

PlenopticPlenoptic SamplingSampling

 Plenoptic Sampling.  Chai, Tong, Chan, Shum 00

 Signal-processing on light field

 Minimal sampling rate for antialiased rendering

 Relates to depth range, Fourier analysis

 Fourer spectra derived for 2D light fields for 
simplicity.  Same ideas extend to 4D
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Siggraph’2000, July 27, 2000
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Light Field Reconstruction

Siggraph’2000, July 27, 2000
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ObservationObservation

• Motion blur is expensive

• Motion blur removes spatial complexity

Basic ExampleBasic Example

• Object not moving
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Basic ExampleBasic Example
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• Low velocity,  t  [ 0.0, 1.0 ]
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Basic ExampleBasic Example
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• High velocity,  t  [ 0.0, 1.0 ]
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Shear in Space-TimeShear in Space-Time

x

y t

x

f(x, t)

• Object moving with low velocity
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• Object moving with high velocity
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Shear in Space-TimeShear in Space-Time

• Object moving away from camera
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Basic ExampleBasic Example

• Applying shutter blurs across time
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Basic Example – Fourier DomainBasic Example – Fourier Domain

• Fourier spectrum, zero velocity 
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Basic Example – Fourier DomainBasic Example – Fourier Domain

• Low velocity, small shear in both domains
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Basic Example – Fourier DomainBasic Example – Fourier Domain

• Large shear
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Basic Example – Fourier DomainBasic Example – Fourier Domain

• Non-linear motion, wedge shaped spectra
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Sampling in Fourier DomainSampling in Fourier Domain
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• Sampling produces replicas in Fourier domain

• Sparse sampling produces dense replicas

Fourier DomainPrimal Domain

Standard Reconstruction FilteringStandard Reconstruction Filtering

• Standard filter, dense sampling (slow)

Ωt

no aliasing

Ωx

Fourier Domain
replicas

Standard Reconstruction FilterStandard Reconstruction Filter

• Standard filter, sparse sampling (fast)

Ωt
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aliasing

Ωx

Sheared Reconstruction FilterSheared Reconstruction Filter

• Our sheared filter, sparse sampling (fast)
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No aliasing!

Fourier Domain

Sheared Reconstruction FilterSheared Reconstruction Filter

• Compact shape in Fourier = wide in primal
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Car SceneCar Scene

Stratified Sampling
4 samples per pixel

Our Method,
4 samples per pixel
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Teapot SceneTeapot Scene
Our Method

8 samples / pix

motion blurred 
reflection

Reflection as ConvolutionReflection as Convolution

 My PhD thesis (A signal-processing framework for 
forward and inverse rendering Stanford 2002)

 Rewrite reflection equation on curved surfaces as 
a convolution with frequency-space product form

 Theoretical underpinning for much work on 
relighting (next lecture), limits of inverse problems

 Low-dimensional lighting models for Lambertian

AssumptionsAssumptions

 Known geometry

 Convex curved surfaces: no shadows, interreflection

 Distant illumination

 Homogeneous isotropic materials

Later precomputed methods: relax many assumptions

ReflectionReflection
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Reflection as Convolution (2D)Reflection as Convolution (2D)
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Reflection as Convolution (2D)Reflection as Convolution (2D)

B L  

Frequency: product

Spatial: integral
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Fourier analysis

R. Ramamoorthi and P. Hanrahan “Analysis of Planar Light  Fields from Homogeneous  Convex Curved Surfaces  under 
Distant Illumination” SPIE Photonics West 2001: Human Vision and Electronic Imaging VI pp 195-208
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Spherical HarmonicsSpherical Harmonics
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Insights: Signal ProcessingInsights: Signal Processing

Signal processing framework for reflection
 Light is the signal
 BRDF is the filter
 Reflection on a curved surface is convolution

Insights: Signal ProcessingInsights: Signal Processing

Signal processing framework for reflection
 Light is the signal
 BRDF is the filter
 Reflection on a curved surface is convolution

Filter is Delta function  : Output = Signal

Mirror BRDF :  Image = Lighting
[Miller and Hoffman 84]

Image courtesy Paul Debevec

Insights: Signal ProcessingInsights: Signal Processing

Signal processing framework for reflection
 Light is the signal
 BRDF is the filter
 Reflection on a curved surface is convolution

Signal is Delta function   : Output = Filter

Point Light Source : Images = BRDF
[Marschner et al. 00]
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Roughness

PhongPhong, , MicrofacetMicrofacet ModelsModels

Mirror

Illumination estimation
ill-posed for rough surfaces

Analytic formulae in R. Ramamoorthi and P. Hanrahan
“A Signal-Processing Framework for Inverse Rendering”
SIGGRAPH 2001 pp 117-128

LambertianLambertian

Incident radiance (mirror sphere)

Irradiance (Lambertian)
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R. Ramamoorthi and P. Hanrahan “On the Relationship between Radiance and  Irradiance:
Determining the Illumination from Images of a Convex  Lambertian Object”
Journal of the Optical Society of America A 18(10) Oct 2001 pp 2448-2459 

R. Basri and D. Jacobs “Lambertian Reflectance and Linear Subspaces” ICCV 2001 pp 383-390
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9 Parameter Approximation9 Parameter Approximation
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Exact image
Order 2
9 terms

RMS Error = 1%

For any illumination, average 
error < 3% [Basri Jacobs 01]

Ramamoorthi and Hanrahan 01b

Convolution for general materialsConvolution for general materials

Ramamoorthi and Hanrahan 01
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Frequency: product

Spatial: integral
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Spherical 
harmonic analysis

RealReal--Time RenderingTime Rendering

Motivation: Interactive rendering with natural 
illumination and realistic, measured materials 

Ramamoorthi and Hanrahan 02

Normal Map Filtering and RenderingNormal Map Filtering and Rendering

Han, Sun, Ramamoorthi, Grinspun 07
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More Frequency AnalysisMore Frequency Analysis

 Many other papers
 Shadows: Soler and Sillion 98, Ramamoorthi et al. 04
 Gradients: Ward, Heckbert, Arvo, Igehy, Holzschuch, 

Chen, Ramamoorthi, …
 Wavelets: Gortler et al. 93, …, Ng et al. 03

 Full frequency analysis of light transport
 Durand et al. 05
 Space and Angle, generalizes previous work

 Many recent papers in computational imaging 
[Levin et al. 08, 09]


