Advanced Computer Graphics (Fall 2009)

CS 294, Rendering Lecture 6:

Recent Advances in Monte Carlo Offline Rendering

Ravi Ramamoorthi

http://inst.eecs.berkeley.edu/~cs294-13/fa09

Some slides/ideas courtesy Pat Hanrahan, Henrik Jens

Discussion

- Problems different over years. Initially, how to make rendering a single picture fast.
- Now, multidimensional effects, multiple images. Include image-based lighting, reflectance.
- Monte Carlo itself is a well known numerical method. But, many recent insights, more to come
- Lecture surveys much work in last decade at high-level. Need to read papers for more depth.

History and Outline

Is Monte Carlo Rendering solved?

- Can it be made more efficient (90s):
 - Irradiance caching takes advantage of coherence Correct sampling: Stratified, Multiple Importance, Bidirectional path tracing, Metropolis...
 - Photon Mapping
- Work with Image-Based Appearance (02-06) Importance sampling environment maps, BRDFs
- Multidimensional effects (depth-of field, soft shadows, motion blur)
 - Adaptive multidimensional sampling Cut-based hierarchical integration

 - Frequency space analysis

- Empirically, (diffuse) interreflections low frequency
- Therefore, should be able to sample sparsely
- Irradiance caching samples irradiance at few points on surfaces, and then interpolates
- Ward, Rubinstein, Clear. SIGGRAPH 88,
- A ray tracing solution for diffuse interreflection

Algorithm Outline

- Find all samples with w(x) > q
- if (samples found)
- interpolate
- else
 - compute new irradiance
- N.B. Subsample the image first and then fill in

History and Outline

Is Monte Carlo Rendering solved?

- Can it be made more efficient (90s):
 - Irradiance caching takes advantage of coherence Correct sampling: Stratified, Multiple Importance, Bidirectional path tracing, Metropolis... Photon Mapping
- Work with Image-Based Appearance (02-06) Importance sampling environment maps, BRDFs
- Multidimensional effects (depth-of field, soft shadows, motion blur)
 - Adaptive multidimensional sampling Cut-based hierarchical integration

 - Frequency space analysis

Better Sampling

- Smarter ways to Monte Carlo sample
- Long history: Stratified, Importance, Bi-Directional, Multiple Importance, Metropolis
- Good reference is Veach thesis
- We only briefly discuss a couple of strategies

Path Tracing: From Lights

- Step 1. Choose a light ray
- Step 2. Find ray-surface intersection
- Step 3. Reflect or transmit u = Uniform() if u < reflectance(x) Choose new direction d ~ BRDF(O|I) goto Step 2
- else if u < reflectance(x)+transmittance(x) Choose new direction d ~ BTDF(O|I) goto Step 2
- else // absorption=1-reflectance-transmittance terminate on surface; deposit energy

Why Photon Map?

- Some visual effects like caustics hard with standard path tracing from eye
- May usually miss light source altogether
- Instead, store "photons" from light in kd-tree
- Look-up into this as needed
- Combines tracing from light source, and eye
- Similar to bidirectional path tracing, but compute photon map only once for all eye rays
- Global Illumination using Photon Maps H. Jensen. Rendering Techniques (EGSR 1996), pp 21-30. (Also book: Realistic Image Synthesis using Photon Mapping)

History and Outline

Is Monte Carlo Rendering solved?

- Can it be made more efficient (90s):
 - Irradiance caching takes advantage of coherence Correct sampling: Stratified, Multiple Importance, Bidirectional path tracing, Metropolis... Photon Mapping
- Work with Image-Based Appearance (02-06) Importance sampling environment maps, BRDFs
- Multidimensional effects (depth-of field, soft shadows, motion blur)
 - Adaptive multidimensional sampling Cut-based hierarchical integration

 - Frequency space analysis

Image-Based Appearance

- Standard global illumination is difficult, but the emitters and reflective properties are simple
- In mid-1990s, interest in appearance acquired from real world, such as image-based lighting
- Environment Maps, measured BRDFs. These are functions. E.g. any of million pixels emitter
- How to (importance) sample lighting, BRDFs? Agarwal et al. SIGGRAPH 03, Lawrence et al. SIGGRAPH 04, Clarberg et al. SIGGRAPH 05

BRDF Sampling

- Lighting is only one component. Must be able to importance sample the BRDF in glob. Illum.
- In 2004, no good importance sampling schemes for most BRDFs, including common Torrance-Sparrow
- From Lawrence et al. 04, factor BRDF into datadriven terms that can each be importance sampled

Complex BRDF Models

Key Idea

 Project 4D BRDF into sum of products of 2D function dependent on *@_e* and

2D function dependent on ω_i :

$$f_r(\omega_o, \omega_i)(n \cdot \omega_i) = \sum_{j=1}^J \frac{F_j(\omega_o)}{G_j(\omega_p)} G_j(\omega_p)$$

 ${\mathcal O}_p$ depends **only** on the incoming direction and some re-parameterization of the hemisphere.

Key Idea

· Project 4D BRDF into sum of products of 2D function dependent on ω_a and 2D function dependent on ω_i :

$$f_r(\omega_o, \omega_i)(n \cdot \omega_i) = \sum_{j=1}^J F_j(\omega_o) G_j(\omega_p)$$

 $\omega_{\rm n}$ depends **only** on the incoming direction and some re-parameterization of the hemisphere.

300 Samples/Pixel

Subsequent Work

- Multiple Importance Sampling [Veach 95] of BRDF and Environment Map [Lawrence 05]
- Fast Wavelet Products [Ng et al. 04]
- · Wavelet Importance Sampling of product of lighting and BRDF [Clarberg et al. 05]
- · Some efforts to also consider visibility

History and Outline

- Is Monte Carlo Rendering solved?
 - Can it be made more efficient (90s):
 - Irradiance caching takes advantage of coherence
 Correct sampling: Stratified, Multiple Importance, Bidirectional path tracing, Metropolis...
 Photon Mapping
- Work with Image-Based Appearance (02-06) Importance sampling environment maps, BRDFs
- Multidimensional effects (depth-of field, soft shadows, motion blur)

 - Adaptive multidimensional sampling *Cut-based hierarchical integration* Frequency space analysis

Recent Results

- Frequency Analysis and Sheared Reconstruction for Rendering Motion Blur Egan et al. 09
- Fourier Depth of Field Subr et al. 09
- These papers consider frequency analysis of particular phenomena – sparse sampling, reconstruction.
- Adaptive Wavelet Rendering Overbeck et al. 09 renders directly into wavelet domain for general high-D effects. Minimal overhead: simple and fast

<section-header>