
1

Advanced Computer Graphics Advanced Computer Graphics
(Fall 2009)(Fall 2009)

CS 294, Rendering Lecture 5: Monte Carlo Path Tracing

Ravi Ramamoorthi

http://inst.eecs.berkeley.edu/~cs294-13/fa09

Acknowledgements and some slides: Szymon Rusinkiewicz and Pat Hanrahan

To DoTo Do

 Start working on assignment

 Find partners for this purpose

MotivationMotivation

 General solution to rendering and global illumination

 Suitable for a variety of general scenes

 Based on Monte Carlo methods

 Enumerate all paths of light transport

Monte Carlo Path TracingMonte Carlo Path Tracing

Big diffuse light source, 20 minutesBig diffuse light source, 20 minutes

JensenJensen

Monte Carlo Path TracingMonte Carlo Path Tracing

1000 paths/pixel1000 paths/pixel

JensenJensen

Monte Carlo Path TracingMonte Carlo Path Tracing

Advantages
 Any type of geometry (procedural, curved, ...)
 Any type of BRDF (specular, glossy, diffuse, ...)
 Samples all types of paths (L(SD)*E)
 Accuracy controlled at pixel level
 Low memory consumption
 Unbiased - error appears as noise in final image

Disadvantages (standard Monte Carlo problems)
 Slow convergence (square root of number of samples)
 Noise in final image

2

Monte Carlo Path TracingMonte Carlo Path Tracing

Integrate radiance
for each pixel
by sampling paths
randomly

Diffuse SurfaceDiffuse Surface

EyeEye

LightLight

xx

SpecularSpecular
SurfaceSurface

PixelPixel

wdnw)w(x,Lwwxf)w(x,L)w(x,L ireo


)(),,( 



wdnw)w(x,Lwwxf)w(x,L)w(x,L ireo


)(),,( 



Simple Monte Carlo Path TracerSimple Monte Carlo Path Tracer

 Step 1: Choose a ray (u,v,,) [per pixel]; assign weight = 1

 Step 2: Trace ray to find intersection with nearest surface

 Step 3: Randomly choose between emitted and reflected light
 Step 3a: If emitted,

return weight’ * Le
 Step 3b: If reflected,

weight’’ *= reflectance
Generate ray in random direction
Go to step 2

Sampling TechniquesSampling Techniques

Problem: how do we generate random points/directions
during path tracing and reduce variance?

 Importance sampling (e.g. by BRDF)
 Stratified sampling

SurfaceSurface

EyeEye

xx

OutlineOutline

 Motivation and Basic Idea

 Implementation of simple path tracer

 Variance Reduction: Importance sampling

 Other variance reduction methods

 Specific 2D sampling techniques

Simplest Monte Carlo Path TracerSimplest Monte Carlo Path Tracer

For each pixel, cast n samples and average
 Choose a ray with p=camera, d=(,) within pixel
 Pixel color += (1/n) * TracePath(p, d)

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
 Trace ray (p, d) to find nearest intersection p’
 Select with probability (say) 50%:

 Emitted:
return 2 * (Lered, Legreen, Leblue) // 2 = 1/(50%)

 Reflected:
generate ray in random direction d’
return 2 * fr(d d’) * (nd’) * TracePath(p’, d’)

Simplest Monte Carlo Path TracerSimplest Monte Carlo Path Tracer

For each pixel, cast n samples and average over paths
 Choose a ray with p=camera, d=(,) within pixel
 Pixel color += (1/n) * TracePath(p, d)

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
 Trace ray (p, d) to find nearest intersection p’
 Select with probability (say) 50%:

 Emitted:
return 2 * (Lered, Legreen, Leblue) // 2 = 1/(50%)

 Reflected:
generate ray in random direction d’
return 2 * fr(d d’) * (nd’) * TracePath(p’, d’)

3

Simplest Monte Carlo Path TracerSimplest Monte Carlo Path Tracer

For each pixel, cast n samples and average
 Choose a ray with p=camera, d=(,) within pixel
 Pixel color += (1/n) * TracePath(p, d)

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
 Trace ray (p, d) to find nearest intersection p’
 Select with probability (say) 50%:

 Emitted:
return 2 * (Lered, Legreen, Leblue) // 2 = 1/(50%)

 Reflected:
generate ray in random direction d’
return 2 * fr(d d’) * (nd’) * TracePath(p’, d’)

Weight = 1/probability
Remember: unbiased
requires having f(x) / p(x)

Simplest Monte Carlo Path TracerSimplest Monte Carlo Path Tracer

For each pixel, cast n samples and average
 Choose a ray with p=camera, d=(,) within pixel
 Pixel color += (1/n) * TracePath(p, d)

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
 Trace ray (p, d) to find nearest intersection p’
 Select with probability (say) 50%:

 Emitted:
return 2 * (Lered, Legreen, Leblue) // 2 = 1/(50%)

 Reflected:
generate ray in random direction d’
return 2 * fr(d d’) * (nd’) * TracePath(p’, d’)

Path terminated when
Emission evaluated

Arnold Renderer (M. Arnold Renderer (M. FajardoFajardo))
 Works well diffuse surfaces, hemispherical light

Advantages and DrawbacksAdvantages and Drawbacks

 Advantage: general scenes, reflectance, so on
 By contrast, standard recursive ray tracing only mirrors

 This algorithm is unbiased, but horribly inefficient
 Sample “emitted” 50% of the time, even if emitted=0
 Reflect rays in random directions, even if mirror
 If light source is small, rarely hit it

 Goal: improve efficiency without introducing bias
 Variance reduction using many of the methods discussed

for Monte Carlo integration last week
 Subject of much interest in graphics in 90s till today

OutlineOutline

 Motivation and Basic Idea

 Implementation of simple path tracer

 Variance Reduction: Importance sampling

 Other variance reduction methods

 Specific 2D sampling techniques

4

Importance SamplingImportance Sampling

 Pick paths based on energy or expected contribution
 More samples for high-energy paths
 Don’t pick low-energy paths

 At “macro” level, use to select between reflected vs
emitted, or in casting more rays toward light sources

 At “micro” level, importance sample the BRDF to
pick ray directions

 Tons of papers in 90s on tricks to reduce variance in
Monte Carlo rendering

Importance SamplingImportance Sampling

Can pick paths however we want, but contribution
weighted by 1/probability
 Already seen this division of 1/prob in weights to emission,

reflectance

)(

)(

1
)(

1

i

i
i

N

i
i

xp

xf
Y

Y
N

dxxf



 


)(

)(

1
)(

1

i

i
i

N

i
i

xp

xf
Y

Y
N

dxxf



 


xx11 xxNN

E(f(x))E(f(x))

Simplest Monte Carlo Path TracerSimplest Monte Carlo Path Tracer

For each pixel, cast n samples and average
 Choose a ray with p=camera, d=(,) within pixel
 Pixel color += (1/n) * TracePath(p, d)

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
 Trace ray (p, d) to find nearest intersection p’
 Select with probability (say) 50%:

 Emitted:
return 2 * (Lered, Legreen, Leblue) // 2 = 1/(50%)

 Reflected:
generate ray in random direction d’
return 2 * fr(d d’) * (nd’) * TracePath(p’, d’)

Importance sample Emit Importance sample Emit vsvs ReflectReflect

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
 Trace ray (p, d) to find nearest intersection p’
 If Le = (0,0,0) then pemit= 0 else pemit= 0.9 (say)
 If random() < pemit then:

 Emitted:
return (1/ pemit) * (Lered, Legreen, Leblue)

 Else Reflected:
generate ray in random direction d’
return (1/(1- pemit)) * fr(d d’) * (nd’) * TracePath(p’, d’)

Importance sample Emit Importance sample Emit vsvs ReflectReflect

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
 Trace ray (p, d) to find nearest intersection p’
 If Le = (0,0,0) then pemit= 0 else pemit= 0.9 (say)
 If random() < pemit then:

 Emitted:
return (1/ pemit) * (Lered, Legreen, Leblue)

 Else Reflected:
generate ray in random direction d’
return (1/(1- pemit)) * fr(d d’) * (nd’) * TracePath(p’, d’)

Can never be 1 unless
Reflectance is 0

OutlineOutline

 Motivation and Basic Idea

 Implementation of simple path tracer

 Variance Reduction: Importance sampling

 Other variance reduction methods

 Specific 2D sampling techniques

5

More variance reductionMore variance reduction

 Discussed “macro” importance sampling
 Emitted vs reflected

 How about “micro” importance sampling
 Shoot rays towards light sources in scene
 Distribute rays according to BRDF

 Pick a light source

 Trace a ray towards that light

 Trace a ray anywhere except for that light
 Rejection sampling

 Divide by probabilities
 1/(solid angle of light) for ray to light source
 (1 – the above) for non-light ray
 Extra factor of 2 because shooting 2 rays

One Variation for Reflected RayOne Variation for Reflected Ray

Russian RouletteRussian Roulette

 Maintain current weight along path
(need another parameter to TracePath)

 Terminate ray iff |weight| < const.

 Be sure to weight by 1/probability

Monte Carlo ExtensionsMonte Carlo Extensions

Unbiased
 Bidirectional path tracing
 Metropolis light transport

Biased, but consistent
 Noise filtering
 Adaptive sampling
 Irradiance caching

6

Monte Carlo ExtensionsMonte Carlo Extensions

Unbiased
 Bidirectional path tracing
 Metropolis light transport

Biased, but consistent
 Noise filtering
 Adaptive sampling
 Irradiance caching

RenderParkRenderPark

Monte Carlo ExtensionsMonte Carlo Extensions

Unbiased
 Bidirectional path tracing
 Metropolis light transport

Biased, but consistent
 Noise filtering
 Adaptive sampling
 Irradiance caching

HeinrichHeinrich

Monte Carlo ExtensionsMonte Carlo Extensions

Unbiased
 Bidirectional path tracing
 Metropolis light transport

Biased, but consistent
 Noise filtering
 Adaptive sampling
 Irradiance caching

UnfilteredUnfiltered

FilteredFiltered JensenJensen

Monte Carlo ExtensionsMonte Carlo Extensions

Unbiased
 Bidirectional path tracing
 Metropolis light transport

Biased, but consistent
 Noise filtering
 Adaptive sampling
 Irradiance caching

AdaptiveAdaptive

FixedFixed

OhbuchiOhbuchi

Monte Carlo ExtensionsMonte Carlo Extensions

Unbiased
 Bidirectional path tracing
 Metropolis light transport

Biased, but consistent
 Noise filtering
 Adaptive sampling
 Irradiance caching

JensenJensen

Monte Carlo Path Tracing ImageMonte Carlo Path Tracing Image

2000 samples per pixel, 30 computers, 30 hours2000 samples per pixel, 30 computers, 30 hours JensenJensen

7

OutlineOutline

 Motivation and Basic Idea

 Implementation of simple path tracer

 Variance Reduction: Importance sampling

 Other variance reduction methods

 Specific 2D sampling techniques

2D Sampling: Motivation2D Sampling: Motivation

 Final step in sending reflected ray: sample 2D domain

 According to projected solid angle

 Or BRDF

 Or area on light source

 Or sampling of a triangle on geometry

 Etc.

Sampling Upper HemisphereSampling Upper Hemisphere

 Uniform directional sampling: how to generate
random ray on a hemisphere?

 Option #1: rejection sampling
 Generate random numbers (x,y,z), with x,y,z in –1..1
 If x2+y2+z2 > 1, reject
 Normalize (x,y,z)
 If pointing into surface (ray dot n < 0), flip

Sampling Upper HemisphereSampling Upper Hemisphere

 Option #2: inversion method
 In polar coords, density must be proportional to sin 

(remember d(solid angle) = sin d d)
 Integrate, invert  cos-1

 So, recipe is
 Generate  in 0..2
 Generate z in 0..1
 Let  = cos-1 z
 (x,y,z) = (sin  cos , sin  sin , cos )

BRDF Importance SamplingBRDF Importance Sampling

 Better than uniform sampling: importance sampling

 Because you divide by probability, ideally
probability  fr * cos i

8

BRDF Importance SamplingBRDF Importance Sampling

 For cosine-weighted Lambertian:
 Density = cos sin 
 Integrate, invert  cos-1(sqrt)

 So, recipe is:
 Generate  in 0..2
 Generate z in 0..1
 Let  = cos-1 (sqrt(z))

BRDF Importance SamplingBRDF Importance Sampling

 Phong BRDF: fr  cosn where  is angle between
outgoing ray and ideal mirror direction

 Constant scale = ks(n+2)/(2)

 Can’t sample this times cos i
 Can only sample BRDF itself, then multiply by cos i
 That’s OK – still better than random sampling

BRDF Importance SamplingBRDF Importance Sampling

 Recipe for sampling specular term:
 Generate z in 0..1
 Let  = cos-1 (z1/(n+1))
 Generate  in 0..2

 This gives direction w.r.t. ideal mirror direction

 Convert to (x,y,z), then rotate such that z points along
mirror dir.

SummarySummary

 Monte Carlo methods robust and simple (at least until
nitty gritty details) for global illumination

 Must handle many variance reduction methods in
practice

 Importance sampling, Bidirectional path tracing,
Russian roulette etc.

 Rich field with many papers, systems researched over
last 10 years

