
1

Advanced Computer Graphics Advanced Computer Graphics
(Fall 2009)(Fall 2009)

CS 294, Rendering Lecture 5: Monte Carlo Path Tracing

Ravi Ramamoorthi

http://inst.eecs.berkeley.edu/~cs294-13/fa09

Acknowledgements and some slides: Szymon Rusinkiewicz and Pat Hanrahan

To DoTo Do

 Start working on assignment

 Find partners for this purpose

MotivationMotivation

 General solution to rendering and global illumination

 Suitable for a variety of general scenes

 Based on Monte Carlo methods

 Enumerate all paths of light transport

Monte Carlo Path TracingMonte Carlo Path Tracing

Big diffuse light source, 20 minutesBig diffuse light source, 20 minutes

JensenJensen

Monte Carlo Path TracingMonte Carlo Path Tracing

1000 paths/pixel1000 paths/pixel

JensenJensen

Monte Carlo Path TracingMonte Carlo Path Tracing

Advantages
 Any type of geometry (procedural, curved, ...)
 Any type of BRDF (specular, glossy, diffuse, ...)
 Samples all types of paths (L(SD)*E)
 Accuracy controlled at pixel level
 Low memory consumption
 Unbiased - error appears as noise in final image

Disadvantages (standard Monte Carlo problems)
 Slow convergence (square root of number of samples)
 Noise in final image

2

Monte Carlo Path TracingMonte Carlo Path Tracing

Integrate radiance
for each pixel
by sampling paths
randomly

Diffuse SurfaceDiffuse Surface

EyeEye

LightLight

xx

SpecularSpecular
SurfaceSurface

PixelPixel

wdnw)w(x,Lwwxf)w(x,L)w(x,L ireo

)(),,(

wdnw)w(x,Lwwxf)w(x,L)w(x,L ireo

)(),,(

Simple Monte Carlo Path TracerSimple Monte Carlo Path Tracer

 Step 1: Choose a ray (u,v,,) [per pixel]; assign weight = 1

 Step 2: Trace ray to find intersection with nearest surface

 Step 3: Randomly choose between emitted and reflected light
 Step 3a: If emitted,

return weight’ * Le
 Step 3b: If reflected,

weight’’ *= reflectance
Generate ray in random direction
Go to step 2

Sampling TechniquesSampling Techniques

Problem: how do we generate random points/directions
during path tracing and reduce variance?

 Importance sampling (e.g. by BRDF)
 Stratified sampling

SurfaceSurface

EyeEye

xx

OutlineOutline

 Motivation and Basic Idea

 Implementation of simple path tracer

 Variance Reduction: Importance sampling

 Other variance reduction methods

 Specific 2D sampling techniques

Simplest Monte Carlo Path TracerSimplest Monte Carlo Path Tracer

For each pixel, cast n samples and average
 Choose a ray with p=camera, d=(,) within pixel
 Pixel color += (1/n) * TracePath(p, d)

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
 Trace ray (p, d) to find nearest intersection p’
 Select with probability (say) 50%:

 Emitted:
return 2 * (Lered, Legreen, Leblue) // 2 = 1/(50%)

 Reflected:
generate ray in random direction d’
return 2 * fr(d d’) * (nd’) * TracePath(p’, d’)

Simplest Monte Carlo Path TracerSimplest Monte Carlo Path Tracer

For each pixel, cast n samples and average over paths
 Choose a ray with p=camera, d=(,) within pixel
 Pixel color += (1/n) * TracePath(p, d)

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
 Trace ray (p, d) to find nearest intersection p’
 Select with probability (say) 50%:

 Emitted:
return 2 * (Lered, Legreen, Leblue) // 2 = 1/(50%)

 Reflected:
generate ray in random direction d’
return 2 * fr(d d’) * (nd’) * TracePath(p’, d’)

3

Simplest Monte Carlo Path TracerSimplest Monte Carlo Path Tracer

For each pixel, cast n samples and average
 Choose a ray with p=camera, d=(,) within pixel
 Pixel color += (1/n) * TracePath(p, d)

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
 Trace ray (p, d) to find nearest intersection p’
 Select with probability (say) 50%:

 Emitted:
return 2 * (Lered, Legreen, Leblue) // 2 = 1/(50%)

 Reflected:
generate ray in random direction d’
return 2 * fr(d d’) * (nd’) * TracePath(p’, d’)

Weight = 1/probability
Remember: unbiased
requires having f(x) / p(x)

Simplest Monte Carlo Path TracerSimplest Monte Carlo Path Tracer

For each pixel, cast n samples and average
 Choose a ray with p=camera, d=(,) within pixel
 Pixel color += (1/n) * TracePath(p, d)

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
 Trace ray (p, d) to find nearest intersection p’
 Select with probability (say) 50%:

 Emitted:
return 2 * (Lered, Legreen, Leblue) // 2 = 1/(50%)

 Reflected:
generate ray in random direction d’
return 2 * fr(d d’) * (nd’) * TracePath(p’, d’)

Path terminated when
Emission evaluated

Arnold Renderer (M. Arnold Renderer (M. FajardoFajardo))
 Works well diffuse surfaces, hemispherical light

Advantages and DrawbacksAdvantages and Drawbacks

 Advantage: general scenes, reflectance, so on
 By contrast, standard recursive ray tracing only mirrors

 This algorithm is unbiased, but horribly inefficient
 Sample “emitted” 50% of the time, even if emitted=0
 Reflect rays in random directions, even if mirror
 If light source is small, rarely hit it

 Goal: improve efficiency without introducing bias
 Variance reduction using many of the methods discussed

for Monte Carlo integration last week
 Subject of much interest in graphics in 90s till today

OutlineOutline

 Motivation and Basic Idea

 Implementation of simple path tracer

 Variance Reduction: Importance sampling

 Other variance reduction methods

 Specific 2D sampling techniques

4

Importance SamplingImportance Sampling

 Pick paths based on energy or expected contribution
 More samples for high-energy paths
 Don’t pick low-energy paths

 At “macro” level, use to select between reflected vs
emitted, or in casting more rays toward light sources

 At “micro” level, importance sample the BRDF to
pick ray directions

 Tons of papers in 90s on tricks to reduce variance in
Monte Carlo rendering

Importance SamplingImportance Sampling

Can pick paths however we want, but contribution
weighted by 1/probability
 Already seen this division of 1/prob in weights to emission,

reflectance

)(

)(

1
)(

1

i

i
i

N

i
i

xp

xf
Y

Y
N

dxxf

)(

)(

1
)(

1

i

i
i

N

i
i

xp

xf
Y

Y
N

dxxf

xx11 xxNN

E(f(x))E(f(x))

Simplest Monte Carlo Path TracerSimplest Monte Carlo Path Tracer

For each pixel, cast n samples and average
 Choose a ray with p=camera, d=(,) within pixel
 Pixel color += (1/n) * TracePath(p, d)

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
 Trace ray (p, d) to find nearest intersection p’
 Select with probability (say) 50%:

 Emitted:
return 2 * (Lered, Legreen, Leblue) // 2 = 1/(50%)

 Reflected:
generate ray in random direction d’
return 2 * fr(d d’) * (nd’) * TracePath(p’, d’)

Importance sample Emit Importance sample Emit vsvs ReflectReflect

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
 Trace ray (p, d) to find nearest intersection p’
 If Le = (0,0,0) then pemit= 0 else pemit= 0.9 (say)
 If random() < pemit then:

 Emitted:
return (1/ pemit) * (Lered, Legreen, Leblue)

 Else Reflected:
generate ray in random direction d’
return (1/(1- pemit)) * fr(d d’) * (nd’) * TracePath(p’, d’)

Importance sample Emit Importance sample Emit vsvs ReflectReflect

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
 Trace ray (p, d) to find nearest intersection p’
 If Le = (0,0,0) then pemit= 0 else pemit= 0.9 (say)
 If random() < pemit then:

 Emitted:
return (1/ pemit) * (Lered, Legreen, Leblue)

 Else Reflected:
generate ray in random direction d’
return (1/(1- pemit)) * fr(d d’) * (nd’) * TracePath(p’, d’)

Can never be 1 unless
Reflectance is 0

OutlineOutline

 Motivation and Basic Idea

 Implementation of simple path tracer

 Variance Reduction: Importance sampling

 Other variance reduction methods

 Specific 2D sampling techniques

5

More variance reductionMore variance reduction

 Discussed “macro” importance sampling
 Emitted vs reflected

 How about “micro” importance sampling
 Shoot rays towards light sources in scene
 Distribute rays according to BRDF

 Pick a light source

 Trace a ray towards that light

 Trace a ray anywhere except for that light
 Rejection sampling

 Divide by probabilities
 1/(solid angle of light) for ray to light source
 (1 – the above) for non-light ray
 Extra factor of 2 because shooting 2 rays

One Variation for Reflected RayOne Variation for Reflected Ray

Russian RouletteRussian Roulette

 Maintain current weight along path
(need another parameter to TracePath)

 Terminate ray iff |weight| < const.

 Be sure to weight by 1/probability

Monte Carlo ExtensionsMonte Carlo Extensions

Unbiased
 Bidirectional path tracing
 Metropolis light transport

Biased, but consistent
 Noise filtering
 Adaptive sampling
 Irradiance caching

6

Monte Carlo ExtensionsMonte Carlo Extensions

Unbiased
 Bidirectional path tracing
 Metropolis light transport

Biased, but consistent
 Noise filtering
 Adaptive sampling
 Irradiance caching

RenderParkRenderPark

Monte Carlo ExtensionsMonte Carlo Extensions

Unbiased
 Bidirectional path tracing
 Metropolis light transport

Biased, but consistent
 Noise filtering
 Adaptive sampling
 Irradiance caching

HeinrichHeinrich

Monte Carlo ExtensionsMonte Carlo Extensions

Unbiased
 Bidirectional path tracing
 Metropolis light transport

Biased, but consistent
 Noise filtering
 Adaptive sampling
 Irradiance caching

UnfilteredUnfiltered

FilteredFiltered JensenJensen

Monte Carlo ExtensionsMonte Carlo Extensions

Unbiased
 Bidirectional path tracing
 Metropolis light transport

Biased, but consistent
 Noise filtering
 Adaptive sampling
 Irradiance caching

AdaptiveAdaptive

FixedFixed

OhbuchiOhbuchi

Monte Carlo ExtensionsMonte Carlo Extensions

Unbiased
 Bidirectional path tracing
 Metropolis light transport

Biased, but consistent
 Noise filtering
 Adaptive sampling
 Irradiance caching

JensenJensen

Monte Carlo Path Tracing ImageMonte Carlo Path Tracing Image

2000 samples per pixel, 30 computers, 30 hours2000 samples per pixel, 30 computers, 30 hours JensenJensen

7

OutlineOutline

 Motivation and Basic Idea

 Implementation of simple path tracer

 Variance Reduction: Importance sampling

 Other variance reduction methods

 Specific 2D sampling techniques

2D Sampling: Motivation2D Sampling: Motivation

 Final step in sending reflected ray: sample 2D domain

 According to projected solid angle

 Or BRDF

 Or area on light source

 Or sampling of a triangle on geometry

 Etc.

Sampling Upper HemisphereSampling Upper Hemisphere

 Uniform directional sampling: how to generate
random ray on a hemisphere?

 Option #1: rejection sampling
 Generate random numbers (x,y,z), with x,y,z in –1..1
 If x2+y2+z2 > 1, reject
 Normalize (x,y,z)
 If pointing into surface (ray dot n < 0), flip

Sampling Upper HemisphereSampling Upper Hemisphere

 Option #2: inversion method
 In polar coords, density must be proportional to sin

(remember d(solid angle) = sin d d)
 Integrate, invert cos-1

 So, recipe is
 Generate in 0..2
 Generate z in 0..1
 Let = cos-1 z
 (x,y,z) = (sin cos , sin sin , cos)

BRDF Importance SamplingBRDF Importance Sampling

 Better than uniform sampling: importance sampling

 Because you divide by probability, ideally
probability fr * cos i

8

BRDF Importance SamplingBRDF Importance Sampling

 For cosine-weighted Lambertian:
 Density = cos sin
 Integrate, invert cos-1(sqrt)

 So, recipe is:
 Generate in 0..2
 Generate z in 0..1
 Let = cos-1 (sqrt(z))

BRDF Importance SamplingBRDF Importance Sampling

 Phong BRDF: fr cosn where is angle between
outgoing ray and ideal mirror direction

 Constant scale = ks(n+2)/(2)

 Can’t sample this times cos i
 Can only sample BRDF itself, then multiply by cos i
 That’s OK – still better than random sampling

BRDF Importance SamplingBRDF Importance Sampling

 Recipe for sampling specular term:
 Generate z in 0..1
 Let = cos-1 (z1/(n+1))
 Generate in 0..2

 This gives direction w.r.t. ideal mirror direction

 Convert to (x,y,z), then rotate such that z points along
mirror dir.

SummarySummary

 Monte Carlo methods robust and simple (at least until
nitty gritty details) for global illumination

 Must handle many variance reduction methods in
practice

 Importance sampling, Bidirectional path tracing,
Russian roulette etc.

 Rich field with many papers, systems researched over
last 10 years

