Advanced Computer Graphics (Fall 2009)

CS 294, Rendering Lecture 5: Monte Carlo Path Tracing Ravi Ramamoorthi
http://inst.eecs.berkeley.edu/~cs294-13/fa09

Acknowledgements and some slides: Szymon Rusinkiewicz and Pat Hanrahan

Big diffuse light source, 20 minutes

Jensen

Outline

- Motivation and Basic Idea
- Implementation of simple path tracer
- Variance Reduction: Importance sampling
- Other variance reduction methods
- Specific 2D sampling techniques

Simplest Monte Carlo Path Tracer

For each pixel, cast n samples and average over paths

- Choose a ray with $p=$ camera, $d=(\theta, \phi)$ within pixel
" Pixel color += (1/n) * TracePath(p, d)
TracePath (p, d) returns (r,g,b) [and calls itself recursively]:
- Trace ray (p, d) to find nearest intersection p,
- Select with probability (say) 50% :
- Emitted:
return 2 * $\left(\mathrm{Le}_{\text {redd }}, \mathrm{Le}_{\text {green }}\right.$ Le $\left._{\text {bilue }}\right) / / 2=1 /(50 \%)$
- Reflected:
generate ray in random direction d^{\prime}
return $2 * f_{r}\left(d \rightarrow d^{\prime}\right) *\left(n \cdot d^{\prime}\right) * \operatorname{TracePath}\left(p^{\prime}, d^{\prime}\right)$

Simplest Monte Carlo Path Tracer

For each pixel, cast n samples and average

- Choose a ray with $p=$ camera, $d=(\theta, \phi)$ within pixel
- Pixel color += (1/n) * TracePath (p, d)

TracePath (p, d) returns ($\mathrm{r}, \mathrm{g}, \mathrm{b}$) [and calls itself recursively]:

- Trace ray (p, d) to find nearest intersection p,
- Select with probability (say) 50% : ${ }^{*} \quad \begin{aligned} & \text { Weight }=1 / \text { probability } \\ & \text { Remember: unbiased }\end{aligned}$ " Emitted:

- Reflected:
generate ray in random direction d^{\prime}
return $2{ }^{*} f_{r}\left(d \rightarrow d^{\prime}\right) *\left(n \cdot d^{\prime}\right) * \operatorname{TracePath}\left(p^{\prime}, d^{\prime}\right)$

Simplest Monte Carlo Path Tracer

> For each pixel, cast n samples and average

- Choose a ray with $p=$ camera, $d=(\theta, \phi)$ within pixel
" Pixel color += (1/n) * $\operatorname{TracePath}(p, d)$

TracePath (p, d) returns ($\mathrm{r}, \mathrm{g}, \mathrm{b}$) [and calls itself recursively]:

- Trace ray (p, d) to find nearest intersection p,
- Select with probability (say) 50\%:
" Emitted:
return $2 *\left(\right.$ Le $\left._{\text {red }}, \mathrm{Le}_{\text {green, }}, \mathrm{Le}_{\text {blue }}\right) / / 2=1 /(50 \%)$
- Reflected: \longleftarrow Path terminated when generate ray in random direction $d^{\prime} \quad$ Emission evaluated return 2 * $f_{r}\left(d \rightarrow d^{\prime}\right) *\left(n \cdot d^{\prime}\right) * \operatorname{TracePath}\left(p^{\prime}, d^{\prime}\right)$

Arnold Renderer (M. Fajardo)

Outline

- Motivation and Basic Idea
- Implementation of simple path tracer
- Variance Reduction: Importance sampling
- Other variance reduction methods
- Specific 2D sampling techniques

Importance Sampling

- Pick paths based on energy or expected contribution
- More samples for high-energy paths
" Don't pick low-energy paths
" At "macro" level, use to select between reflected vs emitted, or in casting more rays toward light sources
" At "micro" level, importance sample the BRDF to pick ray directions
- Tons of papers in 90s on tricks to reduce variance in Monte Carlo rendering

Importance Sampling

Can pick paths however we want, but contribution weighted by 1/probability

- Already seen this division of 1/prob in weights to emission, reflectance

$$
\begin{aligned}
& \begin{array}{l}
\int_{\Omega} f(x) d x=\frac{1}{N} \sum_{i=1}^{N} Y_{i} \\
Y_{i}=\frac{f\left(x_{i}\right)}{p\left(x_{i}\right)}
\end{array} \\
& \mathrm{x}_{1}
\end{aligned}
$$

Importance sample Emit vs Reflect
TracePath (p, d) returns ($\mathrm{r}, \mathrm{g}, \mathrm{b}$) [and calls itself recursively]:

- Trace ray (p, d) to find nearest intersection p,
* If Le $=(0,0,0)$ then $p_{\text {emit }}=0$ else $p_{\text {emit }}=0.9$ (say)
- If random() $<\mathrm{p}_{\text {emit }}$ then:
" Emitted:
return ($\left.1 / \mathrm{p}_{\text {emilil }}\right) *\left(\mathrm{Le}_{\text {red }}, \mathrm{Le}_{\text {green }}, \mathrm{Le}_{\text {bue }}\right)$
- Else Reflected:
generate ray in random direction d^{\prime}
return $\left(1 /\left(1-\mathrm{P}_{\text {emil }}\right)\right)$ * $f_{r}\left(d \rightarrow d^{\prime}\right) *\left(n \cdot d^{\prime}\right) * \operatorname{TracePath}\left(p^{\prime}, d^{\prime}\right)$
- Emitted:
- Reflected:
generate ray in random direction d^{\prime}
return 2 * $f_{r}\left(d \rightarrow d^{\prime}\right) *\left(n \cdot d^{\prime}\right) * \operatorname{TracePath}\left(p^{\prime}, d^{\prime}\right)$

Importance sample Emit vs Reflect
TracePath (p, d) returns ($\mathrm{r}, \mathrm{g}, \mathrm{b}$) [and calls itself recursively]:

- Trace ray (p, d) to find nearest intersection p,
- If Le $=(0,0,0)$ then $p_{\text {emit }}=0$ else $p_{\text {emit }}=0.9$ (say)
" If random() < Pemit then: Can never be 1 unless - Emitted: \quad Reflectance is 0
return $\left(1 / \mathrm{P}_{\text {emil }}\right)$ * $\left(\mathrm{Le}_{\text {red }}, \mathrm{Le}_{\text {green, }}, \mathrm{Le}_{\text {buue }}\right)$
- Else Reflected:
generate ray in random direction d'
$\operatorname{return}\left(1 /\left(1-\mathrm{P}_{\text {emili }}\right)\right) * f_{r}\left(d \rightarrow d^{\prime}\right) *\left(n \cdot d^{\prime}\right) * \operatorname{TracePath}\left(p^{\prime}, d^{\prime}\right)$

Outline

- Motivation and Basic Idea
- Implementation of simple path tracer
- Variance Reduction: Importance sampling
- Other variance reduction methods
- Specific 2D sampling techniques

More variance reduction

- Discussed "macro" importance sampling
- Emitted vs reflected
- How about "micro" importance sampling
" Shoot rays towards light sources in scene
- Distribute rays according to BRDF

One Variation for Reflected Ray

- Pick a light source
- Trace a ray towards that light
- Trace a ray anywhere except for that light
- Rejection sampling
- Divide by probabilities
- 1/(solid angle of light) for ray to light source
" (1 - the above) for non-light ray
- Extra factor of 2 because shooting 2 rays

Russian Roulette

- Maintain current weight along path (need another parameter to TracePath)
- Terminate ray iff |weight| < const.
- Be sure to weight by 1/probability

Russian Roulette

Terminate photon with probability p
Adjust weight of the result by 1/(1-p)

$$
E(X)=p \cdot 0+(1-p) \frac{E(X)}{1-p}=E(X)
$$

Intuition:

Reflecting from a surface with $R=.5$
100 incoming photons with power 2 W

1. Reflect $\mathbf{1 0 0}$ photons with power $\mathbf{1} \mathbf{W}$

2 Reflect 50 photons with power 2 W
CS348B Lecture 14
at Hanrahan, Spring 2009

Path Tracing: Include Direct Lighting

Step 1. Choose a camera ray r given the
(x, y, u, v, t) sample
weight $=1$;
$\mathrm{L}=0$
Step 2. Find ray-surface intersection
Step 3.
$\mathrm{L}+=$ weight * $\operatorname{Lr}($ light sources)
weight $*=$ reflectance (r)
Choose new ray $r^{\prime} \sim$ BRDF pdf(r)
Go to Step 2.
CS348B Lecture 14
Pat Hanrahan, Spring 2009

Monte Carlo Extensions

Unbiased

- Bidirectional path tracing
- Metropolis light transport

Biased, but consistent

- Noise filtering
- Adaptive sampling
- Irradiance caching

Monte Carlo Extensions

Outline

- Motivation and Basic Idea
- Implementation of simple path tracer
- Variance Reduction: Importance sampling
- Other variance reduction methods
- Specific 2D sampling techniques

2D Sampling: Motivation

- Final step in sending reflected ray: sample 2D domain
- According to projected solid angle
- Or BRDF
- Or area on light source
- Or sampling of a triangle on geometry
- Etc.

Sampling Upper Hemisphere

- Uniform directional sampling: how to generate random ray on a hemisphere?
- Option \#1: rejection sampling
- Generate random numbers ($\mathrm{x}, \mathrm{y}, \mathrm{z}$), with $\mathrm{x}, \mathrm{y}, \mathrm{z}$ in $-1 . .1$
- If $x^{2}+y^{2}+z^{2}>1$, reject
- Normalize ($\mathrm{x}, \mathrm{y}, \mathrm{z}$)
- If pointing into surface (ray dot $\mathrm{n}<0$), flip

Sampling Upper Hemisphere

- Option \#2: inversion method
- In polar coords, density must be proportional to $\sin \theta$ (remember d (solid angle) $=\sin \theta d \theta d \phi$)
- Integrate, invert \rightarrow cos $^{-1}$
- So, recipe is
- Generate ϕ in $0 . .2 \pi$
- Generate z in $0 . .1$
- Let $\theta=\cos ^{-1} z$
" $(x, y, z)=(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$

BRDF Importance Sampling

- Better than uniform sampling: importance sampling
- Because you divide by probability, ideally probability $\propto f_{r}{ }^{*} \cos \theta_{i}$

BRDF Importance Sampling

- For cosine-weighted Lambertian:
- Density $=\cos \theta \sin \theta$
- Integrate, invert $\rightarrow \cos ^{-1}$ (sqrt)
- So, recipe is:
- Generate ϕ in $0 . .2 \pi$
- Generate z in $0 . .1$
- Let $\theta=\cos ^{-1}(\operatorname{sqrt}(z))$

BRDF Importance Sampling

- Phong BRDF: $f_{r} \propto \cos ^{n} \alpha$ where α is angle between outgoing ray and ideal mirror direction
- Constant scale $=k_{s}(n+2) /(2 \pi)$
- Can't sample this times $\cos \theta_{i}$
- Can only sample BRDF itself, then multiply by $\cos \theta_{i}$
- That's OK - still better than random sampling

Summary
- Monte Carlo methods robust and simple (at least until
nitty gritty details) for global illumination
= Must handle many variance reduction methods in
practice
= Importance sampling, Bidirectional path tracing,
Russian roulette etc.
= Rich field with many papers, systems researched over
last 10 years

