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MotivationMotivation

Rendering = integration
 Reflectance equation: Integrate over incident illumination
 Rendering equation: Integral equation

Many sophisticated shading effects involve integrals
 Antialiasing
 Soft shadows
 Indirect illumination
 Caustics

Example: Soft ShadowsExample: Soft Shadows Monte CarloMonte Carlo

 Algorithms based on statistical sampling and random 
numbers

 Coined in the beginning of 1940s.  Originally used 
for neutron transport, nuclear simulations
 Von Neumann, Ulam, Metropolis, …

 Canonical example: 1D integral done numerically
 Choose a set of random points to evaluate function, and 

then average (expectation or statistical average)

Monte Carlo AlgorithmsMonte Carlo Algorithms

Advantages
 Robust for complex integrals in computer graphics 

(irregular domains, shadow discontinuities and so on)
 Efficient for high dimensional integrals (common in 

graphics: time, light source directions, and so on)
 Quite simple to implement
 Work for general scenes, surfaces
 Easy to reason about (but care taken re statistical bias)

Disadvantages
 Noisy
 Slow (many samples needed for convergence) 
 Not used if alternative analytic approaches exist (but those 

are rare)

OutlineOutline

 Motivation

 Overview, 1D integration

 Basic probability and sampling

 Monte Carlo estimation of integrals
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Integration in 1DIntegration in 1D
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We can approximate We can approximate 
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Standard integration methods like trapezoidal
rule and Simpsons rule

Advantages: 
• Converges fast for smooth integrands
• Deterministic

Disadvantages:
• Exponential complexity in many dimensions
• Not rapid convergence for discontinuities

Or we can averageOr we can average
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Estimating the averageEstimating the average
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Monte Carlo methods (random choose samples)

Advantages: 
• Robust for discontinuities
• Converges reasonably for large dimensions
• Can handle complex geometry, integrals
• Relatively simple to implement, reason about

Other DomainsOther Domains
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Multidimensional DomainsMultidimensional Domains

Same ideas apply for integration over …
 Pixel areas
 Surfaces
 Projected areas
 Directions
 Camera apertures
 Time
 Paths
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Random VariablesRandom Variables

 Describes possible outcomes of an experiment

 In discrete case, e.g. value of a dice roll [x = 1-6]

 Probability p associated with each x (1/6 for dice)

 Continuous case is obvious extension 

Expected ValueExpected Value

 Expectation

 For Dice example: 
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Sampling TechniquesSampling Techniques

Problem: how do we generate random 
points/directions during path tracing?
 Non-rectilinear domains
 Importance (BRDF)
 Stratified

SurfaceSurface

EyeEye

xx

Generating Random PointsGenerating Random Points

Uniform distribution:
 Use random number generator
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Generating Random PointsGenerating Random Points

Specific probability distribution:
 Function inversion
 Rejection
 Metropolis
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Common OperationsCommon Operations

Want to sample probability distributions
 Draw samples distributed according to probability
 Useful for integration, picking important regions, etc.

Common distributions
 Disk or circle
 Uniform
 Upper hemisphere for visibility
 Area luminaire
 Complex lighting like an environment map
 Complex reflectance like a BRDF

Generating Random PointsGenerating Random Points
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Rejection SamplingRejection Sampling
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Monte Carlo Path TracingMonte Carlo Path Tracing

Big diffuse light source, 20 minutesBig diffuse light source, 20 minutes

JensenJensen
Motivation for rendering in graphics: Covered in detail in next lecture
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Monte Carlo Path TracingMonte Carlo Path Tracing

1000 paths/pixel1000 paths/pixel

JensenJensen

Estimating the averageEstimating the average
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Monte Carlo methods (random choose samples)

Advantages: 
• Robust for discontinuities
• Converges reasonably for large dimensions
• Can handle complex geometry, integrals
• Relatively simple to implement, reason about

Other DomainsOther Domains
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More formallyMore formally
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VarianceVariance
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Variance for Dice Example?Variance for Dice Example?

 Work out on board (variance for single dice roll)

VarianceVariance
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Variance decreases as 1/NVariance decreases as 1/N
Error decreases as 1/sqrt(N)Error decreases as 1/sqrt(N)

VarianceVariance

 Problem: variance decreases with 1/N
 Increasing # samples removes noise slowly
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Variance Reduction TechniquesVariance Reduction Techniques

 Importance sampling

 Stratified sampling
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Importance SamplingImportance Sampling

Put more samples where f(x) is bigger
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Importance SamplingImportance Sampling

 This is still unbiased
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for all Nfor all N

Importance SamplingImportance Sampling

 Zero variance if p(x) ~ f(x)

x1 xN

E(f(x))

Less variance with betterLess variance with better
importance samplingimportance sampling
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Stratified SamplingStratified Sampling

 Estimate subdomains separately
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Stratified SamplingStratified Sampling

 This is still unbiased
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Stratified SamplingStratified Sampling

 Less overall variance if less variance 
in subdomains
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More InformationMore Information

 Veach PhD thesis chapter (linked to from website)

 Course Notes (links from website)
 Mathematical Models for Computer Graphics, Stanford, Fall 1997
 State of the Art in Monte Carlo Methods for Realistic Image Synthesis, 

Course 29, SIGGRAPH 2001


