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Source: Agrawala. Ramamoorthi, Heirich, Moll, 2000

Monte Carlo Algorithms

Advantages
Robust for complex integrals in computer graphics
(irregular domains, shadow discontinuities and so on)
Efficient for high dimensional integrals (common in
graphics: time, light source directions, and so on)
Quite simple to implement
Work for general scenes, surfaces
Easy to reason about (but care taken re statistical bias)

Disadvantages
Noisy
Slow (many samples needed for convergence)
Not used if alternative analytic approaches exist (but those
are rare)

Motivation

Rendering = integration
Reflectance equation: Integrate over incident illumination
Rendering equation: Integral equation

Many sophisticated shading effects involve integrals
Antialiasing
Soft shadows
Indirect illumination
Caustics

Monte Carlo
Algorithms based on statistical sampling and random
numbers

Coined in the beginning of 1940s. Originally used
for neutron transport, nuclear simulations
Von Neumann, Ulam, Metropolis, ...

Canonical example: 1D integral done numerically
Choose a set of random points to evaluate function, and
then average (expectation or statistical average)

Outline

Motivation
Overview, 1D integration
Basic probability and sampling

Monte Carlo estimation of integrals




Integration in 1D

i

[ fo9dx =2

Slide courtesy of
Peter Shirley

Or we can average

jf(x)dx: E(f(x)

E(f(x))
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Other Domains

Slide courtesy of
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We can approximate

j f (x)dx z.lf g(x)dx

Standard integration methods like trapezoidal
rule and Simpsons rule

Advantages:
« Converges fast for smooth integrands
« Deterministic

Disadvantages:
« Exponential complexity in many dimensions
« Not rapid convergence for discontinuities

Slide courtesy of
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Estimating the average

If(x)dx=%if(xi)

Monte Carlo methods (random choose samples)

Advantages:
E(f(X))_ Robust for discontinuities

« Converges reasonably for large dimensions

« Can handle complex geometry, integrals
« Relatively simple to implement, reason about

Slide courtesy of
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Multidimensional Domains

Same ideas apply for integration over ...
Pixel areas
Surfaces N
Projected areas J' f (x)dx = iz f(x)
Directions ‘ T N =
Camera apertures .
Time
Paths

Surface
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Expected Value
Expectation  Discrete: E(x) :i X
i=1
1
Continuous:  E(x) :J p(x) f (x) dx
0
For Dice example:
S
=1

E(x) =Z

5% =g(1+2+3+4+5+6)=3.5

Sampling Techniques

Problem: how do we generate random
points/directions during path tracing?
Non-rectilinear domains
Importance (BRDF)

Stratified
Eye
o

Surface

Random Variables

Describes possible outcomes of an experiment
In discrete case, e.g. value of a dice roll [x = 1-6]
Probability p associated with each x (1/6 for dice)

Continuous case is obvious extension

Continuous Probability Distributions

Uniferm

PDF p(x)

plx)z0

CDF P(x)
P(x)= ]p(_\')(."_\'
P(x)=PriX <x) Pih=1

Pr(cr < X < )= [p(x)dx

= P(B)- P(a) :
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Generating Random Points

Uniform distribution:
Use random number generator

=

Probability




Generating Random Points

Specific probability distribution:
Function inversion
Rejection
Metropolis

=

Probability

Sampling Continuous Distributions

Cumulative probability distribution function

P(x)=Pr(X <x)

Construction of samples
Solve for .Y=P/(U)

Must know:

1. The integral of p(x/

0

2. The inverse function //ix) %

Pat Hanrahan, Spring 2004

Example: Power Function

Assume ) e [
plxy=(n+1x" I_I[-‘hf'f-" = ;H_ ||. =

P(x)=x"

X~plx)=X=P'(U)="4U

Trick

¥ = max(U, Uy UL U, )

Pr(Y <x)= ]_I Pril/ <x)=x"
8
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Common Operations

Want to sample probability distributions
Draw samples distributed according to probability
Useful for integration, picking important regions, etc.

Common distributions
Disk or circle
Uniform
Upper hemisphere for visibility
Area luminaire
Complex lighting like an environment map
Complex reflectance like a BRDF

Generating Random Points

Cumulative
Probability

Sampling a Circle

A= :IJI:‘IIJI‘J"(J’J'(HF N ;[rrﬁ':ljr.’ﬂ = I[L%J

] .
Pr.0)dr d0 = —rdr dO = p(r,0) = =
Fra T

i’)||:I “=x

plr.0)= plr)p(€)

i) =—

1
27 0=2xU,
POy -0 Y
T 1

[¢
= e
pry=2r r= \J b’:

P(r) =1
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Sampling a Circle

WRONG = Equi-Areal RIGHT = Equi-Areal
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Rejection Methods

/= IJ‘,{(.\'){.{\‘ °*\° .
_ H d dy o | @ y=f(x)
yerix) o
Algorithm * L

Pick U, and U,
Accept U, if U, < f(U))

Wasteful? Efficiency = Area / Area of rectangle
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Outline
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Overview, 1D integration
Basic probability and sampling

Monte Carlo estimation of integrals

Rejection Sampling

Probability

Sampling a Circle: Rejection

do {
X=1-2+U,
Y=1-2*U,
while( X2+ ¥2 1 )

May be used to pick random 2D directions

Circle techniques may also be applied to the sphere
C€S3488 Lecture & Pat Hanrahan, Spring 2004

Monte Carlo Path Tracing

Big diffuse light source, 20 minutes

Motivation for rendering in graphics: Covered in detail in next lecture



Monte Carlo Path Tracing

1000 paths/pixel

Other Domains

jf(x)dx——Zf(x)
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Unbiased Estimator

ELF, ] Z}l
‘E[E]Zl(ﬂ _TZEIH_%ZH'”'\"”

y 1
Properties = %Z J_J’ (x)plx)dx

£ Z} ] ZL[} =%ZIIJ.‘_."'[.\'}=I\'

[f.'} ]—uL[}]

Assume uniform probability
distribution for now
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Estimating the average

jf(x)dx=%if(xi)

Monte Carlo methods (random choose samples)

Advantages:
E(f(X)) « Robust for discontinuities

« Converges reasonably for large dimensions

« Can handle complex geometry, integrals
« Relatively simple to implement, reason about

Slide courtesy of
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More formally

I
Definite integral I(f)= jf( X)dx
]
Expectation of /' E[f]= j_f‘(.\‘]p(.\‘)ci\‘

Random variables X, ~ p(x)

Y = f(X)

Estimator

Direct Lighting - Directional Sampling

E(x)= JL[.\'. w)cosBdw

{/ -‘:\\ Ray intersection x (x, )
" Sample @ uniformly by ()

Y, = L(x"(x, ®,),~m,) cost 2x
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Direct Lighting - Area Sampling

Variance
E(x)= jf_ (x, w)cosBdw = j.’..,{.\", " W(x, .\")M(M'
143 I I |.\' - .\"l_

Var[f (9]=2 3 1 () - E(F OO)F

Ray direction @' =x-x'

Sample X’ uniformly by A

205 cos &
Y =L (x,0) V(x.x ) 200
eI
’ [0 —wisible
Hx,x") =1
|1 visible
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Y

Variance

Variance for Dice Example?
Definition ) ) )
VY = LY — BV Work out on board (variance for single dice roll)
= E[Y? = 2YE[Y]+ E[Y)]
= E[V’ |- E[}T
Properties
UORIED NS
Vla¥]=a*V[Y]
Variance decreases with sample size
N I ST I SRR
'[TZ,"'_\_-:Z,"”'_T””
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Variance Variance

Problem: variance decreases with 1/N
Var[E(f (x))] _ iVar[f (x)] Increasing # samples removes noise slowly

Variance decreases as 1/N
Error decreases as 1/sqgrt(N)

|




Variance Reduction

Variance Reduction Techniques

Efficiency measure

I Importance sampling

Efficiency o ——— - :
v " Variance e Cost Stratified sampling

1 N
Techniques _[ f(x)dx = %Z f(x)
= Importance sampling 0 =
= Sampling patterns: stratified, ...
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Importance Sampling Importance Sampling
Put more samples where f(x) is bigger This is still unbiased

jf(x)dx:%gYi

Q o
o = [\
B Pg:; =({69)) :[ =0 p(x)dx

= j f (x)dx

E[Y, 1= [Y (0 p(x)dx

for all N

Importance Sampling Stratified Sampling
Zero variance if p(x) ~ f(x) Estimate subdomains separately

pCQ) =cf (x)

vt _1
p(x) ¢

Var(Y)=0

Less variance with better
importance sampling




Stratified Sampling

This is still unbiased
Fy =

More Information

Veach PhD thesis chapter (linked to from website)

Course Notes (links from website)
Mathematical Models for Computer Graphics, Stanford, Fall 1997
State of the Art in Monte Carlo Methods for Realistic Image Synthesis,
Course 29, SIGGRAPH 2001

Stratified Sampling

Less overall variance if less variance
in subdomains




