Advanced Computer Graphics

(Fall 2009)
CS 294, Rendering Lecture 3: Global Illumination http://inst.eecs.berkeley.edu/~cs294-13/fa09

Caustics: Focusing through specular surface

- Major research effort in 80s, 90s till today

Overview of lecture

- Theory for all global illumination methods (ray tracing, path tracing, radiosity)
- We derive Rendering Equation [Kajiya 86]
* Major theoretical development in field
- Unifying framework for all global illumination
- Discuss existing approaches as special cases

Fairly theoretical lecture (but important). Not well covered in textbooks (though see Eric Veach's thesis). Closest are 2.6.2 in Cohen and Wallace handout (but uses slightly different notation, argument [swaps x, x ' among other things])

Outline

- Reflectance Equation (review)
- Global Illumination
- Rendering Equation
" As a general Integral Equation and Operator
" Approximations (Ray Tracing, Radiosity)
- Surface Parameterization (Standard Form)

Reflectance Equation (review)

$\qquad L_{r}\left(x, \omega_{r}\right)=L_{e}\left(x, \omega_{r}\right)+$	$L_{i}\left(x, \omega_{i}\right) f\left(x, \omega_{i}, \omega_{r}\right)\left(\omega_{i} \bullet n\right)$	
Reflected Light Emission	Incident BRDF \quad Cosine of	
(Output Image)		Light (from light source)

Reflectance Equation (review)

$$
\begin{aligned}
& \text { Incident BRDF } \\
& \begin{array}{l}
\text { Light (from } \\
\text { light source) }
\end{array}
\end{aligned}
$$

Reflectance Equation (review)

$$
L_{r}\left(x, \omega_{r}\right)=L_{e}\left(x, \omega_{r}\right)+\int L_{i}\left(x, \omega_{i}\right) f\left(x, \omega_{i}, \omega_{r}\right) \cos \theta_{i} d \omega_{i}
$$

$$
\begin{array}{lllll}
\begin{array}{l}
\text { Reflected Light } \\
\text { (Output Image) }
\end{array} & \text { Emission } & \begin{array}{l}
\text { Incident } \\
\text { Light (from }
\end{array} & \text { BRDF } & \begin{array}{l}
\text { Cosine of } \\
\text { Incident angle }
\end{array}
\end{array}
$$

The Challenge

$L_{r}\left(x, \omega_{r}\right)=L_{e}\left(x, \omega_{r}\right)+\int_{\Omega} L_{i}\left(x, \omega_{i}\right) f\left(x, \omega_{i}, \omega_{r}\right) \cos \theta_{i} d \omega_{i}$

- Computing reflectance equation requires knowing the incoming radiance from surfaces
- But determining incoming radiance requires knowing the reflected radiance from surfaces

Global Illumination
Surfaces (interreflection)

$\omega_{i} \sim x^{\prime}-x$

Rendering Equation (Kajiya 86)

Outline

- Reflectance Equation (review)
- Global Illumination
- Rendering Equation
- As a general Integral Equation and Operator
- Approximations (Ray Tracing, Radiosity)
- Surface Parameterization (Standard Form)

Rendering Equation as Integral
Equation

| $\qquad L_{r}\left(x, \omega_{r}\right)=L_{e}\left(x, \omega_{r}\right)+\int_{\Omega}$ | $L_{r}\left(x^{\prime},-\omega_{i}\right)$ | $f\left(x, \omega_{i}, \omega_{r}\right) \cos \theta_{i} d \omega_{i}$ | | |
| :--- | :---: | :--- | :--- | :--- | :--- |
| Reflected Light
 (Output Image) | Emission | Reflected | BRDF | Cosine of |
| UNKNOWN | | Kight | | Incident angle |
| UNOWN | UNKNOWN | KNOWN | KNOWN | |

Is a Fredholm Integral Equation of second kind [extensively studied numerically] with canonical form

$$
l(u)=e(u)+\int l(v) K(u, v) d v
$$

Kernel of equation

Linear Operator Theory

- Linear operators act on functions like matrices act on vectors or discrete representations

$$
h(u)=(M \circ f)(u) \quad \begin{aligned}
& \mathrm{M} \text { is a linear operator. } \\
& \mathrm{f} \text { and } \mathrm{h} \text { are functions of } \mathrm{t}
\end{aligned}
$$

- Basic linearity relations hold a and b are scalars f and g are functions $M \circ(a f+b g)=a(M \circ f)+b(M \circ g)$
- Examples include integration and differentiation

$$
\begin{aligned}
& (K \circ f)(u)=\int k(u, v) f(v) d v \\
& (D \circ f)(u)=\frac{\partial f}{\partial u}(u)
\end{aligned}
$$

Linear Operator Equation

$$
\begin{aligned}
l(u) & =e(u)+\int l(v) \underset{\substack{\text { Kernel of equation } \\
\text { Light Transport Operator }}}{K(u, v) d v} \\
L & =E+K L
\end{aligned}
$$

Can also be discretized to simple matrix equation [or system of simultaneous linear equations] (L, E are vectors, K is the light transport matrix)

Solving the Rendering Equation

$$
\begin{aligned}
L & =E+K L \\
I L-K L & =E \\
(I-K) L & =E \\
L & =(I-K)^{-1} E
\end{aligned}
$$

Binomial Theorem
$L=\left(I+K+K^{2}+K^{3}+\ldots\right) E$
$L=E+K E+K^{2} E+K^{3} E+\ldots$
Term n corresponds to n bounces of light

Ray Tracing

Solving the Rendering Equation

- Too hard for analytic solution, numerical methods
- Approximations, that compute different terms, accuracies of the rendering equation
- Two basic approaches are ray tracing, radiosity. More formally, Monte Carlo and Finite Element
- Monte Carlo techniques sample light paths, form statistical estimate (example, path tracing)
- Finite Element methods discretize to matrix equation

Successive Approximation

CS348B Lecture 13
Pat Hanrahan, Spring 2009

Outline

- Reflectance Equation (review)
- Global Illumination
- Rendering Equation
" As a general Integral Equation and Operator
" Approximations (Ray Tracing, Radiosity)
- Surface Parameterization (Standard Form)

Rendering Equation
Surfaces (interreflection)

$\omega_{i} \sim x^{\prime}-x$
$L_{r}\left(x, \omega_{r}\right)=L_{e}\left(x, \omega_{r}\right)+\int_{\Omega} L_{r}\left(x^{\prime},-\omega_{i}\right) f\left(x, \omega_{i}, \omega_{r}\right) \cos \theta_{i} d \omega_{i}$

Reflected Light (Output Image)	Emission	Reflected	BRDF	Cosine of Light
UNKNOWN	KNOWN	UNKNOWN	KNOWN	KNOWN

Change of Variables

$L_{r}\left(x, \omega_{r}\right)=L_{e}\left(x, \omega_{r}\right)+\int_{\Omega} L_{r}\left(x^{\prime},-\omega_{i}\right) f\left(x, \omega_{i}, \omega_{r}\right) \cos \theta_{i} d \omega_{i}$
Integral over angles sometimes insufficient. Write integral in terms of surface radiance only (change of variables)

$$
d \omega_{i}=\frac{d A^{\prime} \cos \theta_{o}}{\left|x-x^{\prime}\right|^{2}}
$$

Rendering Equation: Standard Form

$$
L_{r}\left(x, \omega_{r}\right)=L_{e}\left(x, \omega_{r}\right)+\int_{0} L_{r}\left(x^{\prime},-\omega_{i}\right) f\left(x, \omega_{i}, \omega_{r}\right) \cos \theta_{i} d \omega_{i}
$$

Integral over angles sometimes insufficient. Write integral in terms of surface radiance only (change of variables)
$L_{r}\left(x, \omega_{r}\right)=L_{e}\left(x, \omega_{r}\right)+\int_{\text {all } x^{\prime} \text { visible to } x} L_{r}\left(x^{\prime},-\omega_{i}\right) f\left(x, \omega_{i}, \omega_{r}\right) \frac{\cos \theta_{i} \cos \theta_{o}}{\left|x-x^{\prime}\right|^{2}} d A^{\prime}$

Domain integral awkward. Introduce binary visibility fn V
$L_{r}\left(x, \omega_{r}\right)=L_{e}\left(x, \omega_{r}\right)+\int_{r} L_{r}\left(x^{\prime},-\omega_{i}\right) f\left(x, \omega_{i}, \omega_{r}\right) G\left(x, x^{\prime}\right) V\left(x, x^{\prime}\right) d A^{\prime}$
Same as equation 2.52 Cohen Wallace. It swaps primed
And unprimed, omits angular args of BRDF, - sign.

$$
d \omega_{i}=\frac{d A^{\prime} \cos \theta_{o}}{\left|x-x^{\prime}\right|^{2}}
$$

Same as equation above 19.3 in Shirley, except he has
no emission, slightly diff. notation
$G\left(x, x^{\prime}\right)$
$=G(x$

$$
x)=\frac{\cos \theta_{i} \cos \theta_{o}}{\left|x-x^{\prime}\right|^{2}}
$$

Discretization and Form Factors

$$
\begin{aligned}
B(x) & =E(x)+\rho(x) \int_{s} B\left(x^{\prime}\right) \frac{G\left(x, x^{\prime}\right) V\left(x, x^{\prime}\right)}{\pi} d A^{\prime} \\
B_{i} & =E_{i}+\rho_{i} \sum_{j} B_{j} F_{j \rightarrow i} \frac{A_{j}}{A_{i}}
\end{aligned}
$$

F is the form factor. It is dimensionless and is the fraction of energy leaving the entirety of patch j (multiply by area of j to get total energy) that arrives anywhere in the entirety of patch i (divide by area of i to get energy per unit area or radiosity).

Same as equation 2.54 in Cohen Wallace handout (read sec 2.6.3) Ignore factors of π which can be absorbed.

Summary

- Theory for all global illumination methods (ray tracing, path tracing, radiosity)
- We derive Rendering Equation [Kajiya 86]
- Major theoretical development in field
- Unifying framework for all global illumination
- Discuss existing approaches as special cases
- Next: Practical solution using Monte Carlo methods

