CS 283
 Advanced Computer Graphics

Simulation Basics

James F. O'Brien

Associate Professor
U.C. Berkeley

A Rigid Body
- A solid object that does not deform - Consists of infinite number of infinitesimal mass points... - ...that share a single RB transformation - Rotation + Translation (no shear or scale) $\boldsymbol{x}^{W}=\boldsymbol{R} \cdot \boldsymbol{x}^{L}+\boldsymbol{t}$ - Rotation and translation vary over time - Limit of deformable object as $k_{S} \rightarrow \infty$

Tuesday, November 24, 2009

A Rigid Body

In 2D:
Translation 2 "directions"
Rotation I "direction"
3 DOFTotal
In 3D:
Translation 3 "directions"
Rotation 3 "direction"
6 DOFTotal

Translation and rotation are decoupled
2D is boring... we'll stick to 3D from now on...

Translational Motion

Just like a point mass:

$$
\begin{aligned}
\dot{\boldsymbol{p}} & =\boldsymbol{v} \\
\dot{\boldsymbol{v}} & =\boldsymbol{a}=\boldsymbol{f} / m
\end{aligned}
$$

Note: Recall discussion on integration...

Tuesday, November 24, 2009

Rotational Motion \begin{tabular}{l}
Rotation gets a bit odd, as well

see...

Rotational "position" \boldsymbol{R}
Rotation matrix
Quaternions map
Storenal as a vector
(Also called angular velocity...)
Measured in radians / second

\hline
\end{tabular}

Rotational Motion

Kinetic energy due to rotation:
"Sum energy (from rotation) over all points in the object"

$$
\begin{aligned}
& E=\int_{\Omega} \frac{1}{2} \rho \dot{\boldsymbol{x}} \cdot \dot{\boldsymbol{x}} d u \\
& E=\int_{\Omega} \frac{1}{2} \rho([\omega \times] \boldsymbol{x}) \cdot([\omega \times] \boldsymbol{x}) d u
\end{aligned}
$$

Tuesday, November 24, 2009

Rotational Motion

Angular momentum

Similar to linear momentum
Can be derived from rotational energy

$$
\boldsymbol{H}=\partial \boldsymbol{E} / \partial \boldsymbol{\omega}
$$

Figure is a lie if this really is a sphere...

$$
\begin{aligned}
\boldsymbol{H} & =\int_{\Omega} \rho \boldsymbol{x} \times \dot{\boldsymbol{x}} d u \\
\boldsymbol{H} & =\int_{\Omega} \rho \boldsymbol{x} \times(\omega \times \boldsymbol{x}) d u
\end{aligned}
$$

$$
\boldsymbol{H}=\left(\int_{\Omega} \cdots d u\right) \boldsymbol{\omega}
$$

"Inertia Tensor" not
identity matrix...

Inertia Tensor

$$
\mathbf{I}=\int_{\Omega} \rho\left[\begin{array}{ccc}
y^{2}+z^{2} & -x y & -x z \\
-x y & z^{2}+x^{2} & -y z \\
-x z & -y z & x^{2}+y^{2}
\end{array}\right] \mathrm{d} u
$$

See example for simple shapes at http://scienceworld.wolfram.com/physics/Momentoflnertia.html

Can also be computed from polygon models by transforming volume integral to a surface one.
See paper/code by Brian Mirtich.

Tuesday, November 24, 2009

Conservation or momentum:

$$
\boldsymbol{H}^{W}=\boldsymbol{I}^{W} \boldsymbol{\omega}^{W}
$$

$$
\boldsymbol{H}^{W}=\boldsymbol{R} \boldsymbol{I}^{L} \boldsymbol{R}^{\top} \boldsymbol{\omega}^{W}
$$

Figure is a lie if this really is s sphere... $\quad \dot{\boldsymbol{H}}^{W}=\dot{\boldsymbol{R}} \boldsymbol{I}^{L} \boldsymbol{R}^{\top} \boldsymbol{\omega}^{W}+\boldsymbol{R} \boldsymbol{I}^{L} \dot{\boldsymbol{R}} \boldsymbol{\omega}^{W}+\boldsymbol{R} \boldsymbol{I}^{L} \boldsymbol{R}^{\top} \boldsymbol{\alpha}^{W}$
$\dot{\boldsymbol{H}}^{W}=0$
$\dot{\boldsymbol{R}}=\boldsymbol{\omega} \times \boldsymbol{R} \quad \boldsymbol{\alpha}^{W}=\left(\boldsymbol{R} \boldsymbol{I}^{L} \boldsymbol{R}^{\top}\right)^{-1}\left(-\boldsymbol{\omega}^{W} \times \boldsymbol{H}^{W}\right)$
In other words, things wobble when they rotate.

Rotational Motion

$$
\begin{aligned}
\dot{\boldsymbol{R}} & =[\omega \times] \boldsymbol{R} \\
\dot{\omega} & =\boldsymbol{\alpha}
\end{aligned}
$$

$$
\begin{gathered}
\boldsymbol{\alpha}^{W}=\left(\boldsymbol{R} \boldsymbol{I}^{L} \boldsymbol{R}^{\boldsymbol{T}}\right)^{-1}\left(\left(-\boldsymbol{\omega}^{W} \times \boldsymbol{H}^{W}\right)+\boldsymbol{\tau}\right) \\
\boldsymbol{\tau}=\boldsymbol{f} \times \boldsymbol{x}
\end{gathered}
$$

Take care when integrating rotations, they need to stay rotations.

Tuesday, November 24, 2009

Tuesday, November 24, 2009

Constraints

- Articulation constraints

- Spring trick is an example of a full coordinate method
- Better constraint methods exist
- Reduced coordinate methods use DOFs in kinematic skeleton for simulation
- Much more complex to explain
- Collisions
- Penalty methods can also be used for collisions
- Again, better constraint methods exist

A Simple Spring

- Ideal zero-length spring
-MM- $\boldsymbol{f}_{a \rightarrow b}=k_{s}(\boldsymbol{b}-\boldsymbol{a})$
$\boldsymbol{f}_{b \rightarrow a}=-\boldsymbol{f}_{a \rightarrow b}$
- Force pulls points together
- Strength proportional to distance

Tuesday, November 24, 2009

A Simple Spring
- Energy potential $\begin{gathered} E=1 / 2 k_{s}(\boldsymbol{b}-\boldsymbol{a}) \cdot(\boldsymbol{b}-\boldsymbol{a}) \\ \boldsymbol{f}_{a \rightarrow b}=k_{s}(\boldsymbol{b}-\boldsymbol{a}) \\ \boldsymbol{f}_{b \rightarrow a}=-\boldsymbol{f}_{a \rightarrow b} \\ \boldsymbol{f}_{a}=-\nabla_{a} E=-\left[\frac{\partial E}{\partial a_{x}}, \frac{\partial E}{\partial a_{y}}, \frac{\partial E}{\partial a_{z}}\right] \end{gathered}$ $-4-2$

	A Simple Spring
	Energy potential: kinetic vs elastic
	$E=1 / 2 k_{s}(\boldsymbol{b}-\boldsymbol{a}) \cdot(\boldsymbol{b}-\boldsymbol{a})$

Tuesday, November 24, 2009

Comments on Springs

- Springs with zero rest length are linear
- Springs with non-zero rest length are nonliner
- Force magnitude linear w/ discplacement (from rest length)
- Force direction is non-linear
- Singularity at $\|\boldsymbol{b}-\boldsymbol{a}\|=0$

Tuesday, November 24, 2009

Damping

. "Mass proportional" damping

$$
\stackrel{\dot{a}}{\longleftrightarrow} \quad \boldsymbol{f}=-k_{d} \dot{\boldsymbol{a}}
$$

- Behaves like viscous drag on all motion
- Consider a pair of masses connected by a spring
- How to model rusty vs oiled spring
- Should internal damping slow group motion of the pair?
- Can help stability... up to a point

Damping

- "Stiffness proportional" damping

$$
-\mathcal{W}-\quad \boldsymbol{f}_{a}=-k_{d} \frac{\boldsymbol{b}-\boldsymbol{a}}{\|\boldsymbol{b}-\boldsymbol{a}\|^{2}}(\boldsymbol{b}-\boldsymbol{a}) \cdot(\dot{\boldsymbol{b}}-\dot{\boldsymbol{a}})
$$

- Behaves viscous drag on change in spring length
- Consider a pair of masses connected by a spring
- How to model rusty vs oiled spring
- Should internal damping slow group motion of the pair?

Tuesday, November 24, 2009

Two ways to model a single spring

Spring Constants

- Constant k_{S} gives inconsistent results with different
discretizations
- Change in length is not what we want to measure
- Strain: change in length as fraction of original length

$$
\epsilon=\frac{\Delta l}{l_{0}} \quad \text { Nice and simple for } 1 \mathrm{D} . . .
$$

Tuesday, November 24, 2009

Tuesday, November 24, 2009

Structures from Springs

- They behave like what they are (obviously!)

This structure will resist shearing but has anisotopic bias

This structure still will not resist out-of-plane bending

Structures from Springs

- They behave like what they are (obviously!)

This structure will resist shearing Less bias
Interference between spring sets
This structure still will not resist out-of-plane bending

Tuesday, November 24, 2009

Structures from Springs

- They behave like what they are (obviously!)

This structure will resist shearing Less bias
Interference between spring sets
This structure will resist out-of-
plane bending
Interference between spring sets Odd behavior

How do we set spring constants?

Edge Springs

$$
\begin{aligned}
& u_{1}=|E| \frac{N_{1}}{\left|N_{1}\right|^{2}} \quad u_{2}=|E| \frac{N_{2}}{\left|N_{2}\right|^{2}} \\
& u_{3}=\frac{\left(x_{1}-x_{4}\right) \cdot E}{|E|} \frac{N_{1}}{\left|N_{1}\right|^{2}}+\frac{\left(x_{2}-x_{4}\right) \cdot E}{|E|} \frac{N_{2}}{\left|N_{2}\right|^{2}} \\
& u_{4}=-\frac{\left(x_{1}-x_{3}\right) \cdot E}{|E|} \frac{N_{1}}{\left|N_{1}\right|^{2}}-\frac{\left(x_{2}-x_{3}\right) \cdot E}{|E|} \frac{N_{2}}{\left|N_{2}\right|^{2}}
\end{aligned}
$$

$$
F_{i}^{e}=k^{e} \frac{|E|^{2}}{\left|N_{1}\right|+\left|N_{2}\right|} \sin (\theta / 2) u_{i}
$$

Example:Thin Material

FEM Problem Setup

- Lagrangian Formulation
-Where in space did this material mode to?
- Commonly used for solid materials
- Eulerian Formulation
-What material is at this location in space?
- Commonly used for fluids

Tuesday, November 24, 2009

Lagrangian Formulation

- Deformation described by mapping from material (local) to word coordinates

Tuesday, November 24, 2009

Example

Another Example

Tuesday, November 24, 2009

Strain

- Green's strain tensor

$$
\epsilon_{i j}=\left(\frac{\partial \boldsymbol{x}}{\partial u_{i}} \cdot \frac{\partial \boldsymbol{x}}{\partial u_{j}}\right)-\delta_{i j}
$$

- Vanishes when not deformed
- Only measures deformation
- Does not depend on the coordinate system

Tuesday, November 24, 2009

Strain

- Green's strain tensor

$$
\begin{aligned}
& \epsilon_{i j}=\left(\frac{\partial \boldsymbol{x}}{\partial u_{i}} \cdot \frac{\partial \boldsymbol{x}}{\partial u_{j}}\right)-\delta_{i j} \\
& l_{x}^{2}-l_{u}^{2}=\boldsymbol{d} \cdot \boldsymbol{\epsilon} \cdot \boldsymbol{d}
\end{aligned}
$$

Strain

- Cauchy's strain tensor

$$
\epsilon_{i j}=\frac{1}{2}\left(\frac{\partial x_{i}}{\partial u_{j}}+\frac{\partial x_{j}}{\partial u_{i}}\right)-\delta_{i j}
$$

- Linearization of Green's strain tensor
- Vanishes when not deformed
- Not invariant w.r.t rotations

$$
l_{x}-l_{u} \approx \boldsymbol{d} \cdot \boldsymbol{\epsilon} \cdot \boldsymbol{d}
$$

Tuesday, November 24, 2009

We'll fix this problem later...

Strain Rate

- Time derivative of Green's strain tensor
- Measures rate of deformation
- Used for internal damping

$$
\dot{\epsilon}_{i j}=\left(\frac{\partial \boldsymbol{x}}{\partial u_{i}} \cdot \frac{\partial \dot{\boldsymbol{x}}}{\partial u_{j}}\right)+\left(\frac{\partial \dot{\boldsymbol{x}}}{\partial u_{i}} \cdot \frac{\partial \boldsymbol{x}}{\partial u_{j}}\right)
$$

Tuesday, November 24, 2009

Strain Rate

- Time derivative of Cauchy's strain tensor
- Measures rate of deformation
- Used for internal damping

$$
\dot{\epsilon}_{i j}=\frac{1}{2}\left(\frac{\partial \dot{x}_{i}}{\partial u_{j}}+\frac{\partial \dot{x}_{j}}{\partial u_{i}}\right)
$$

Stress

- Stress determines internal forces
- Measures how much material "wants" to return to original shape

Tuesday, November 24, 2009

Stress due to Strain

$$
\begin{aligned}
& \sigma_{i j}^{(\epsilon)}=\sum_{k=1}^{3} \lambda \epsilon k \delta_{i j}+\underbrace{2 \mu \epsilon_{i j}}_{i} \\
& \text { stic (Lamé) Constants } \\
& \text { (in)compressibility } \\
& \text { rigidity } \longleftarrow \\
& \hline \begin{array}{c}
\text { Generalization of } \\
f=k d
\end{array}
\end{aligned}
$$

Stress due to Rate

Tuesday, November 24, 2009

Energy Potentials	
Elastic Energy Density $\eta=\frac{1}{2} \sum_{i=1}^{3} \sum_{j=1}^{3} \sigma_{i j}^{(\epsilon)} \epsilon_{i j}$ Kinetic Energy Density $\kappa=\frac{1}{2} \sum_{i=1}^{3} \sum_{j=1}^{3} \sigma_{i j}^{(\nu)} \dot{\epsilon}_{i j}$	Generalization of $E=\frac{1}{2} k d^{2}$ Generalization of $E=\frac{1}{2} m v^{2}$

Discretization

- Transition from continuous model to something we can compute with...

Tuesday, November 24, 2009

Finite Element Method

- Disjoint elements tile material domain
- Derivatives from shape functions
- Nodes shared by adjacent elements

Finite Element Method

- Disjoint elements tile material domain
- Derivatives from shape functions
- Nodes shared by adjacent elements

Tuesday, November 24, 2009

FEM Discretization

- Solid volumes

- Tetrahedral elements
- Linear shape functions

FEM Discretization

- Each element defined by four nodes
- m - location in material (local) coordinates
- p - position in world coordinates
- v - velocity in world coordinates

Tuesday, November 24, 2009

Element Shape Functions

Barycentric coordinates

$$
\left[\begin{array}{c}
u \\
1
\end{array}\right]=\left[\begin{array}{cccc}
\boldsymbol{m}_{[1]} & \boldsymbol{m}_{[2]} & \boldsymbol{m}_{[3]} & \boldsymbol{m}_{[4]} \\
1 & 1 & 1 & 1
\end{array}\right] b
$$

Invert to obtain basis matrix

$$
b=\boldsymbol{\beta}\left[\begin{array}{l}
\boldsymbol{u} \\
1
\end{array}\right]
$$

where

$$
\boldsymbol{\beta}=\left[\begin{array}{cccc}
\boldsymbol{m}_{[1]} & \boldsymbol{m}_{[2]} & \boldsymbol{m}_{[3]} & \boldsymbol{m}_{[4]} \\
1 & 1 & 1 & 1
\end{array}\right]^{-1}
$$

Material Derivatives

World pos. as function of material coordinates

$$
\boldsymbol{x}(\boldsymbol{u})=\boldsymbol{P} \boldsymbol{\beta}\left[\begin{array}{c}
\boldsymbol{u} \\
1
\end{array}\right] \quad \begin{aligned}
& \text { where } \\
& \boldsymbol{P}=\left[p_{[1]} \boldsymbol{p}_{[2]} p_{[3]} p_{[4]}\right]
\end{aligned}
$$

Derivative w.r.t. material coordinates

$$
\frac{\partial \boldsymbol{x}}{\partial u_{i}}=\boldsymbol{P} \boldsymbol{\beta}_{\mathrm{col}_{i}}
$$

Tuesday, November 24, 2009

Recall

$$
\begin{aligned}
& \epsilon_{i j}=\frac{1}{2}\left(\frac{\partial x_{i}}{\partial u_{j}}+\frac{\partial x_{j}}{\partial u_{i}}\right)-\delta_{i j} \\
& \sigma_{i j}^{(\epsilon)}=\sum_{k=1}^{3} \lambda \epsilon_{k k} \delta_{i j}+2 \mu \epsilon_{i j} \\
& \eta=\frac{1}{2} \sum_{i=1}^{3} \sum_{j=1}^{3} \sigma_{i j}^{(\epsilon)} \epsilon_{i j}
\end{aligned}
$$

Node Forces

- Combine derivative formula w/ equations for elastic energy
- Integrate over volume of element
- Take derivative w.r.t. node positions

$$
\boldsymbol{f}_{[i]}^{(\epsilon)}=-\frac{\mathrm{vol}}{2} \sum_{j=1}^{4} \boldsymbol{p}_{[j]} \sum_{k=1}^{3} \sum_{l=1}^{3} \beta_{j l} \beta_{i k} \sigma_{k l}^{(\epsilon)}
$$

Corotational Method

- Factor out rotation using polar decomposition
- Cauchy strain without errors due to rotations

$$
\frac{\partial \boldsymbol{x}}{\partial \boldsymbol{u}} \rightarrow \boldsymbol{Q} \boldsymbol{F}
$$

See paper by
Müller \& Gross, 2004

Node Forces and Jacobian

- Combine derivative formula w/ equations for elastic energy
- Integrate over volume of element
- Take derivative w.r.t. node positions
- Jacobian core is constant
- 12×12 made from little 3×3 blocks $\boldsymbol{J}_{[i][j]}$

$$
\begin{gathered}
\boldsymbol{f}_{[i]}=\boldsymbol{Q} \boldsymbol{\sigma} \boldsymbol{n}_{[i]} \\
\boldsymbol{J}_{[i][j]}=-\boldsymbol{Q}\left(\lambda \boldsymbol{n}_{[i]} \boldsymbol{n}_{[j]}^{\top}+\mu\left(\boldsymbol{n}_{[i]} \cdot \boldsymbol{n}_{[j]}\right) \boldsymbol{I}+\mu \boldsymbol{n}_{[j]} \boldsymbol{n}_{[i]}^{\top}\right) \boldsymbol{Q}^{\top}
\end{gathered}
$$

Tuesday, November 24, 2009

Tuesday, November 24, 2009

Tuesday, November 24, 2009

Force Decomposition

- Separate tensile / compressive forces

$$
\begin{gathered}
\boldsymbol{\sigma}^{+}=\sum_{i=1}^{3} \max \left(0, \mathrm{v}^{i}(\boldsymbol{\sigma})\right) \mathbf{m}\left(\hat{\mathbf{n}}^{i}(\boldsymbol{\sigma})\right) \\
\boldsymbol{\sigma}^{-}=\sum_{i=1}^{3} \min \left(0, \mathrm{v}^{i}(\boldsymbol{\sigma})\right) \mathbf{m}\left(\hat{\mathbf{n}}^{i}(\boldsymbol{\sigma})\right) \\
\mathbf{m}(a)=\left\{\begin{array}{cc:c}
a a^{\top} /|a| & : & a \neq 0 \\
0 & : & a=0
\end{array}\right.
\end{gathered}
$$

Tuesday, November 24, 2009

Separation

- Build psuedo-stress at each vertex

$$
\varsigma=\frac{1}{2}\left(-\mathbf{m}\left(\boldsymbol{f}^{+}\right)+\sum_{\boldsymbol{f} \in\left\{\boldsymbol{f}^{+}\right\}} \mathbf{m}(\boldsymbol{f})+\mathbf{m}\left(\boldsymbol{f}^{-}\right)-\sum_{\boldsymbol{f} \in\left\{\boldsymbol{f}^{-}\right\}} \mathbf{m}(\boldsymbol{f})\right) .
$$

- Eigen decomposition describes how material is being "pulled apart" at each vertex.
- If positive eigenvector over threshold \rightarrow fracture

Tuesday, November 24, 2009

Some Tricks: Back-Cracks

Tuesday, November 24, 2009

Tuesday, November 24, 2009

Example

Example

Tuesday, November 24, 2009

	Remeshing
- Remeshing:	
- Fracture plane is normal to max eigenvector - Duplicate vertex - Split surrounding tetrahedra (Easily implemented as edge splits)	

Splinters

- Splinters are small pieces of geometry attached to a parent element
- The splinter may stick outside the element
- Splinters that cross a face are turned on when the face fractures
- Edge masking, not pre-scoring
- Artistic control

Tuesday, November 24, 2009

Splinters

Tuesday, November 24, 2009

Tuesday, November 24, 2009

Example

Tuesday, November 24, 2009

Sound Example

Modal Decomposition

- Linearize non-linear system

$$
\begin{gathered}
\mathcal{K}(\boldsymbol{d})+\boldsymbol{C}(\boldsymbol{d}, \dot{\boldsymbol{d}})+\mathcal{M}(\ddot{\boldsymbol{d}})=\boldsymbol{f} \\
\boldsymbol{K} \boldsymbol{d}+\boldsymbol{C} \dot{\boldsymbol{d}}+\boldsymbol{M} \ddot{\boldsymbol{d}}=\boldsymbol{f}
\end{gathered}
$$

Tuesday, November 24, 2009

Tuesday, November 24, 2009

Linearization

$$
\begin{gathered}
\mathcal{K}(d)+\mathcal{C}(\dot{d})+\mathcal{M}(\ddot{d})=f \\
K d+C \dot{d}+M \ddot{d}=f \\
K\left(d+\alpha_{1} \dot{d}\right)+M\left(\alpha_{2} \dot{d}+\ddot{d}\right)=f
\end{gathered}
$$

$$
\boldsymbol{C}=\alpha_{1} \boldsymbol{K}+\alpha_{2} \boldsymbol{M}
$$

Normalize for Mass

Normalize for mass by change of coordinates

- Cholesky decomposition $\boldsymbol{M}=\boldsymbol{L} \boldsymbol{L}^{\top}$
- Change coordinates $\quad \boldsymbol{y}=\boldsymbol{L}^{\top} \boldsymbol{d}$

$$
\begin{gathered}
\boldsymbol{K}\left(\boldsymbol{d}+\alpha_{1} \dot{\boldsymbol{d}}\right)+\underset{\downarrow}{\boldsymbol{M}\left(\alpha_{2} \dot{\boldsymbol{d}}+\ddot{\boldsymbol{d}}\right)}=\boldsymbol{f} \\
\boldsymbol{L}^{-1} \boldsymbol{K} \boldsymbol{L}^{-\top}\left(\boldsymbol{y}+\alpha_{1} \dot{\boldsymbol{y}}\right)+\left(\alpha_{2} \dot{\boldsymbol{y}}+\ddot{\boldsymbol{y}}\right)=\boldsymbol{L}^{-1} \boldsymbol{f}
\end{gathered}
$$

Tuesday, November 24, 2009

Diagonalize

- Diagonalize with second change of coordinates
- Eigen decomposition

$$
\begin{aligned}
& \boldsymbol{L}^{-1} \boldsymbol{K} \boldsymbol{L}^{-\top} \\
& \boldsymbol{z}=\boldsymbol{V} \boldsymbol{V} \boldsymbol{\Lambda} \boldsymbol{V}^{\top} \boldsymbol{y}
\end{aligned}
$$

- Change coordinates
$\boldsymbol{L}^{-1} \boldsymbol{K} \boldsymbol{L}^{-\top}\left(\boldsymbol{y}+\alpha_{1} \dot{\boldsymbol{y}}\right)+\left(\alpha_{2} \dot{\boldsymbol{y}}+\ddot{\boldsymbol{y}}\right)=\boldsymbol{L}^{-1} \boldsymbol{f}$
$\boldsymbol{\Lambda}\left(\boldsymbol{z}+\alpha_{1} \dot{\boldsymbol{z}}\right)+\left(\alpha_{2} \dot{\boldsymbol{z}}+\ddot{\boldsymbol{z}}\right)=\boldsymbol{V}^{\top} \boldsymbol{L}^{-1} \boldsymbol{f}$

$$
\boldsymbol{\Lambda} \boldsymbol{z}+\left(\alpha_{1} \boldsymbol{\Lambda}+\alpha_{2} \boldsymbol{I}\right) \dot{\boldsymbol{z}}+\ddot{\boldsymbol{z}}=\boldsymbol{g}
$$

Diagonalize

$$
K\left(\boldsymbol{d}+\alpha_{1} \dot{d}\right)+M\left(\alpha_{2} \dot{d}+\ddot{\boldsymbol{d}}\right)=f
$$

Generalized eigenproblem:
$\boldsymbol{K} \cdot \boldsymbol{w}=\lambda \boldsymbol{M} \cdot \boldsymbol{w}$

$$
W=L^{-\top} V
$$

$$
z=W^{-1} \cdot d \quad g=W^{\top} \cdot f
$$

$$
\Lambda\left(z+\alpha_{1} \dot{z}\right)+\left(\alpha_{2} \dot{z}+\ddot{z}\right)=\boldsymbol{g}
$$

Tuesday, November 24, 2009

Individual Modes

$$
\lambda_{i} z_{i}+\left(\alpha_{1} \lambda_{i}+\alpha_{2}\right) \dot{z}_{i}+\ddot{z}_{i}=g_{i}
$$

$$
z_{i}=c_{1} e^{t \omega_{i}^{+}}+c_{2} e^{t \omega_{i}^{-}}
$$

$$
\omega_{i}^{ \pm}=\frac{-\left(\alpha_{1} \lambda_{i}+\alpha_{2}\right) \pm \sqrt{\left(\alpha_{1} \lambda_{i}+\alpha_{2}\right)^{2}-4 \lambda_{i}}}{2}
$$

Fast Computation

- Only a pair of complex multiplies per time step

$$
e^{\omega(t+\Delta t)}=e^{\omega(t)} e^{\omega(\Delta t)}
$$

- No stability limit on step size
- Jump to arbitrary point in time
- Only keep useful modes

Tuesday, November 24, 2009

Examples

Tuesday, November 24, 2009

PS2 Example

PS2 Example

Tuesday, November 24, 2009

Sound Examples

Synthesizing Sounds from Rigid-Body Simulation

James F. O'Brien
Chen Shen
Christine M. Gatchalian
University of California, Berkeley

ACM SIGGRAPH Symposium on Computer Animation 2002

