Associate Professor
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PR Eody

* A solid object that does not deform

+ Consists of infinite number of infinitesimal mass points...
+ ..that share a single RB transformation
* Rotation + Translation (no shear or scale)
e =Rzl ¢
» Rotation and translation vary over time
+ Limit of deformable object as ks — 00
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A Rigid Body

I 20k
Translation 2 “directions”

Rotation | “direction”
3 D@ e

IR 3Dk
Translation 3 “directions”

Rotation 3 “direction”
& DIGIF ezl

Center of mass

Translation and rotation are decoupled

2D is boring... we'll stick to 3D from now on...

litains|ational Motion

& Just like a point mass:
v o
P =t

v—a_ i i

Note: Recall discussion on integration...
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Rotational Motion

Rotation gets a bit odd, as well
w see’

v Rotational “position” J2
Rotation matrix
Exponential map
Quaternions

Rotational velocity w
Stored as a vector
(Also called angular velocity...)
Measured in radians / second

Rotational Motion

w Kinetic energy due to rotation:

all points in the object”

1
E:/Qépa':-:bdu

5= /Q%p([wx]cc) ) o
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Rotational Motion

Angular momentum
H Similar to linear momentum
w Can be derived from rotational energy
H = 0E /0w
v

: ; v Pl H = rd
Figure is a lie if this /pr e

really is a sphere... H :/ )
9]
H = </ du) w
0
“Inertia Tensor’’ not H=1lw

identity matrix...

Inertia Tensor

VA —m —n
= / p| —xy Z2+x* —yz |du
& =% . =W P y2

See example for simple shapes at
http://scienceworld.wolfram.com/physics/Momentoflnertia.html

Can also be computed from polygon models by transforming
volume integral to a surface one.
See paper/code by Brian Mirtich.
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Rotational Motion

H .
w Conservation or momentum:

3 W _ (W W

HY _ RIZRIC
Figure is a lie if this really is a sphere HW o RILR TwW JL WW dL RILR TaW

7Y —o

Rewxr @ =(BIRY) ' (-w" xH")

In other words, things wobble when they
rotate.

Rotational Motion

H

w=o

Figure is a lie if this really is a sphere.
o = (RI*R")™ (- x H") + 1)
TS S

Take care when integrating rotations, they
need to stay rotations.
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Couples

* A force / torque pair is a couple
+ Also a wrench (I think)
* Many couples are equivalent

@enstraints

* Simples method is to use spring attachments

* Basically a penalty method

+ Spring strength required to get good results may be unreasonably high
* There are ways to cheat in some contexts...

Tuesday, November 24, 2009




@enstraints

* Articulation constraints
+ Spring trick is an example of a full coordinate method
+ Better constraint methods exist

» Reduced coordinate methods use DOFs in kinematic skeleton for
simulation

* Much more complex to explain
» Collisions
+ Penalty methods can also be used for collisions
* Again, better constraint methods exist

A Simple Spring

* |deal zero-length spring

o\\VW\-e f,_p="Fks(b—a)
Toig = iy

* Force pulls points together

» Strength proportional to distance
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A Simple Spring

* Energy potential

E=1/2ks(b—a)-(b—a)

o

B

277
7

fa—>b = ]Cs(b o a)

24
7
27
2

L4
/7
/77

fb—>a = _fa—>b

e <

f v E {8E ) 8E]
-2 -1 0 3z 2 a:_ a = —

A Simple Spring

* Energy potential: kinetic vs elastic

: E=1/2ks(b—a)-(b—a)

E=1/2m(b—a)-(b—a)

-0/5

\W-¢

Tuesday, November 24, 2009




Non-Zero Length Springs

b—a
o\\W\-e faﬁbzksm(ﬂb—aﬂ—l)

Rest length

L
T =
7 =

\

.
III,

E=ks(|lb—al| —1)°

Comments on Springs

* Springs with zero rest length are linear

* Springs with non-zero rest length are nonliner

* Force magnitude linear w/ discplacement (from rest length)
* Force direction is non-linear
* Singularity at ||b — al|| = 0
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Damping

* “Mass proportional” damping

le f=-kja
* Behaves like viscous drag on all motion
+ Consider a pair of masses connected by a spring
+ How to model rusty vs oiled spring
* Should internal damping slow group motion of the pair?
+ Can help stability... up to a point

Damping

» “Stiffness proportional” damping

oo fo= i (b =) (b-a)

* Behaves viscous drag on change in spring length
+ Consider a pair of masses connected by a spring
* How to model rusty vs oiled spring
+ Should internal damping slow group motion of the pair?
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Spring Constants

* Two ways to model a single spring

Spring Constants

- Constant kg gives inconsistent results with different
discretizations

+ Change in length is not what we want to measure

» Strain: change in length as fraction of original length

Al

E —_— —
0 Nice and simple for 1D...
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Structures from Springs

* Sheets

* Blocks

» Others

Structures from Springs

* They behave like what they are (obviously!)

/This structure will not resist
shearing

This structure will not resist out-
of-plane bending either...

-
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Structures from Springs

* They behave like what they are (obviously!)

This structure will resist shearing
but has anisotopic bias

This structure still will not resist
out-of-plane bending

Structures from Springs

* They behave like what they are (obviously!)

/

This structure will resist shearing
Less bias

Interference between spring sets

This structure still will not resist
Z out-of-plane bending
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Structures from Springs

* They behave like what they are (obviously!)

/This structure will resist shearing
Less bias
Interference between spring sets

This structure will resist out-of-
plane bending

Interference between spring sets
Odd behavior

s 'v- <'V

How do we set spring constants? .,

Edge Springs

3 N, N,
s~ Hiye e

(x17x4)-E N, (x27x4)-E N,

N Uy = =l B
g [El  IV? [E] N2

(x;—x3)-E N, (x27x3)»E N,
|E] \Nl|2 El IV

U, =—

E]?

Fle:ke
IN{ |+ N, |

sin(0/2) u,

From Bridson et al,, 2003, also see Grinspun et al.,, 2003 8
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Example: Thin Material

EEMFRroblem Setup

* Lagrangian Formulation
* Where in space did this material mode to?

+ Commonly used for solid materials

* Eulerian Formulation
* What material is at this location in space?

+ Commonly used for fluids
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Problem Setup

* Lagrangian Formulation
* Where in space did this material mode to?

+ Commonly used for solid materials

Lagrangian Formulation

* Deformation described by mapping from material
(local) to word coordinates
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Example
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Strain

* Strain measures deformation
* Purely geometric

* Example: simple strain in a bar

Strain

» Green’s strain tensor

ox Oz 5
s : LN
() : . 2
J Ou; Ou ] J
* Vanishes when not deformed

* Only measures deformation

* Does not depend on the coordinate system
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Strain

» Green’s strain tensor

(ol o
GZ]_ 81% (9u] L

2 =Gl zaa

Strain

* Cauchy's strain tensor

e W
I, ouw, " duy g

* Linearization of Green'’s strain tensor
 Vanishes when not deformed

 Not invariant w.rt rotations

le —ly~d-ed
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BlsicariZzation Errors

We'll fix this problem later...

Strain Rate

* Time derivative of Green’s strain tensor
» Measures rate of deformation

* Used for internal damping

o flgs e (e O
EZ] 3 8ul 8u] 8’% 8uj
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Strain Rate

* Time derivative of Cauchy'’s strain tensor
* Measures rate of deformation

* Used for internal damping

Stress

« Stress determines internal forces

* Measures how much material “wants”’ to return to
original shape

t

v
»
n

t=o0-n _‘ '}/

,,,,,,,,,,,, ds
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Stress due to Strain

5
(€)
7 Z )‘Ekkéij + 2:“€Z'j

=
Elastic (Lamé) Constanti|

(in)compressibility

Generalization of

f=kd

rigidity

Stress due to Rate

3
Uz(}/) = DT erroy, AR
k=1

-

Damping Constants

¢ Generalization of

Y f=cv
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Energy Potentials

Elastic Energy Density
B
e (€)
=5 Z Z 2 U
=l =il
Kinetic Energy Density

e v
’12522%‘ =

i=1j=1

Generalization of

1, 9
E = Shd

Generalization of

1
E = §mv2

Discretization

compute with...

* Transition from continuous model to something we can
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Finite Element Method

* Disjoint elements tile material domain
* Derivatives from shape functions

* Nodes shared by adjacent elements

Finite Element Method

* Disjoint elements tile material domain
* Derivatives from shape functions

* Nodes shared by adjacent elements
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FEM Discretization

* Solid volumes
* Tetrahedral elements

* Linear shape functions

FEM Discretization

* Each element defined by four nodes

* m - location in material (local) coordinates
* p - position in world coordinates

* v - velocity in world coordinates
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Element Shape Functions

Barycentric coordinates

o) R R B B E B
2 1Ll

Invert to obtain basis matrix

2 ﬂ hﬂ where

Material Derivatives

World pos. as function of material coordinates

m(u) - Pg {’lﬂ where
P= {Pm Ppg) Pjy P[4]]

Derivative w.rt. material coordinates
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Recall

§ 2 au]‘ (9U2 o

8
(€)
g Z )‘Ekk5ij 4= 2:“6@'3'
1
3 >
! (€)
15 Db %35 i
i

Node Forces

+ Combine derivative formula w/ equations for elastic
energy

* Integrate over volume of element

* Take derivative w.rt. node positions

[Z] - VOIZP[J ZZBJZﬂZkUkl

k=1 [=1
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Corotational Method

* Factor out rotation using polar decomposition

+ Cauchy strain without errors due to rotations

ox

i = 1
ou
o O
ou
//// T 8(13
See paper by
Miiller & Gross, 2004 ou

Node Forces and Jacobian

+ Combine derivative formula w/ equations for elastic
energy

* Integrate over volume of element

* Take derivative w.rt. node positions

* Jacobian core is constant
* 12 x 12 made from little 3 x 3 blocks J (3 5]

Jfig=Qony

.
T = —QOnpnf + p(ng - np)I + pnymf)Q
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Video footage © Pixelux Entertainment, used with permission.
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BhcciUre

* Fracture changes the mesh

Fracture

A A
|

Sy~
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Fracture

Force Decomposition

* Separate tensile / compressive forces

o= Z max(0,v'(e)) m(A’(o))

3
o = Zmin(o,vi(a)) m(i' (o))

IS N
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Separation

* Build psuedo-stress at each vertex

= (—m<f+>+Z m(f) +m(f7)-> m(f)) :

Reiifas) FELT™ N

* Eigen decomposition describes how material is being
“pulled apart” at each vertex.

* If positive eigenvector over threshold = fracture

Remeshing

* Remeshing:

+ Fracture plane is normal to max eigenvector
* Duplicate vertex
+ Split surrounding tetrahedra

(Easily implemented as edge-splits)
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Remeshing

A# I
-y,

Some Tricks: Back-Cracks

DD PO

Problem
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e Iricks: Back-Craeks

7D &

%@ﬁ\“

Without Splitting

T

Set thresholds infinite to
suppress splitting

=7
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Example

Example
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Remeshing

* Remeshing:
+ Fracture plane is normal to max eigenvector
+ Duplicate vertex
. So :
Caciled :

Splinters

* Splinters are small pieces
of geometry attached to
a parent element

* The splinter may stick outside the
element

* Splinters that cross a face are turned
on when the face fractures

* Edge masking, not pre-scoring

« Artistic control
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Splinters
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Modal Analysis

Object Description

‘ Precompute efficient representation of object

Preprocessing

Runtime

’ Use representation for fast simulation ‘

Display

Deformation

t geometry

Obj
and material properties

Generate
tetrahedral mesh
Build
system matrices

Compute
eigen-decomp

Compute
rigid-body parameters

collision structures

Preprocessing

Interactive

Contact/Inertial
Forces

Modal synthesis

Collision
Geometry

Constraints

N

Deformable Object Motion
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Example

Sound

Object geometry
and material properties
Generate

tetrahedral mesh

Compute
Build rigid-body parameters
system matrices

and buil
collision structures

Compute
eigen-decompos

Interactive

Contact
Forces

Modal synthesis

Rigid-body
simulation

deo renderer
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Sound Example

Metal' Bowl

Modal Decomposition

* Linearize non-linear system

K(d)+C(d,d)+M(d)=f

3

Kd+Cd+Md=f
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Modal Decomposition

+ Consequences of linearization

* No local rotations

Modal Decomposition

Az+ (a1 A+ al)2+2=g

ToOTT
oPes
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| inearization

K(d)+C(d)+ M(d)=f

Kd+Cd# Md=f

K(d+ aid) + M(apxd+d) = f

C=o01K+ oM

Normalize for Mass

Normalize for mass by change of
coordinates

Cholesky decompositon M = LLT
Change coordinates y=L'd

K(d+ aid) + M(axd+d) = f

U

LKL "(y+ @)+ (g +§) =L f
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Diagonalize

Diagonalize with second change of
coordinates

Eigen decomposition L 'KL " = vVAVT
Change coordinates z = VTy

L'KL "(y+oa19) + (g +4§) =L f

Az+a2) +(az+2)=V'L™'f

Az+ (a1 A+al)2+2 =g

Diagonalize

K(d+ aid) + M(axd+d) = f

Generalized eigenproblem:
K -w=)\M - w
W=LTV

z2=w-1.d g=WT-f

Az4+a12)+ (a2 +2) =g
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Individual Modes

ANizi + (1 Fan)z; + 2, = g;

+ fiiy
Z; = c1et? 4 coes

wk = _(alAi+O‘2)i\/2(C¥1>\z'+a2)2—4)\z‘
\ ATA A
TG

Fast Computation

* Only a pair of complex multiplies per time step
ew(t—l—At) - ew(t) ew(At)
* No stability limit on step size

* Jump to arbitrary point in time

* Only keep useful modes
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Examples

Examples

T——
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PS2 Example

PS2 Example
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Sound Examples

Synthesizing Sounds from
Rigid—Body Simulation

James F. O’Brien
Chen Shen
Christine M. Gatchalian

University of California, Berkeley

ACM SIGGRAPH Symposium on Computer Animation 2002
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