### CS 283 Advanced Computer Graphics

### **Simulation Basics**

### James F. O'Brien

Associate Professor U.C. Berkeley

### A Rigid Body

- A solid object that does not deform
  - Consists of infinite number of infinitesimal mass points...
  - ...that share a single RB transformation
    - Rotation + Translation (no shear or scale)

$$\boldsymbol{x}^W = \boldsymbol{R} \cdot \boldsymbol{x}^L + \boldsymbol{t}$$

- Rotation and translation vary over time
- Limit of deformable object as  $k_S 
  ightarrow \infty$

Tuesday, November 24, 2009

### A Rigid Body













|     | Inertia Tensor                                                                                                                                      |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------|
|     | $\mathbf{I} = \int_{\Omega} \rho \begin{bmatrix} y^2 + z^2 & -xy & -xz \\ -xy & z^2 + x^2 & -yz \\ -xz & -yz & x^2 + y^2 \end{bmatrix} \mathrm{d}u$ |
|     | See example for simple shapes at<br>http://scienceworld.wolfram.com/physics/MomentofInertia.html                                                    |
|     | Can also be computed from polygon models by transforming volume integral to a surface one.<br>See paper/code by Brian Mirtich.                      |
|     | 8                                                                                                                                                   |
| Tuo | aday Navambar 24, 2000                                                                                                                              |

Tuesday, November 24, 2009





Tuesday, November 24, 2009

### Couples

- A force / torque pair is a couple
  - Also a wrench (I think)
- Many couples are equivalent





Tuesday, November 24, 2009

### Constraints

- Articulation constraints
  - Spring trick is an example of a full coordinate method
    - Better constraint methods exist
  - Reduced coordinate methods use DOFs in kinematic skeleton for simulation
    - Much more complex to explain
- Collisions
- Penalty methods can also be used for collisions
- Again, better constraint methods exist

### A Simple Spring

• Ideal zero-length spring

$$f_{a \to b} = k_s (b - a)$$

$$\boldsymbol{f}_{b \to a} = -\boldsymbol{f}_{a \to b}$$

- Force pulls points together
- Strength proportional to distance

Tuesday, November 24, 2009





Tuesday, November 24, 2009





Tuesday, November 24, 2009

### Damping

• "Mass proportional" damping

$$f \rightarrow \dot{a}$$
  $f = -k_d \dot{a}$ 

- Behaves like viscous drag on all motion
- Consider a pair of masses connected by a spring
  - How to model rusty **vs** oiled spring
  - Should internal damping slow group motion of the pair?
- Can help stability... up to a point

### Damping

• "Stiffness proportional" damping

- Behaves viscous drag on change in spring length
- Consider a pair of masses connected by a spring
  - How to model rusty **vs** oiled spring
  - Should internal damping slow group motion of the pair?

Tuesday, November 24, 2009









Tuesday, November 24, 2009





Tuesday, November 24, 2009





Tuesday, November 24, 2009

### Example: Thin Material



### FEM Problem Setup

Lagrangian Formulation

- Where in space did this material mode to?
- Commonly used for solid materials
- Eulerian Formulation
- What material is at this location in space?

30

• Commonly used for fluids

Tuesday, November 24, 2009





Tuesday, November 24, 2009

## Example









Tuesday, November 24, 2009









Tuesday, November 24, 2009

### Strain Rate

- Time derivative of Cauchy's strain tensor
- Measures rate of deformation
- Used for internal damping

$$\dot{\epsilon}_{ij} = \frac{1}{2} \left( \frac{\partial \dot{x}_i}{\partial u_j} + \frac{\partial \dot{x}_j}{\partial u_i} \right)$$



Tuesday, November 24, 2009





Tuesday, November 24, 2009





Tuesday, November 24, 2009



- Disjoint elements tile material domain
- Derivatives from shape functions
- Nodes shared by adjacent elements



### Finite Element Method

- Disjoint elements tile material domain
- Derivatives from shape functions
- Nodes shared by adjacent elements







Tuesday, November 24, 2009





Tuesday, November 24, 2009

Recall  

$$\epsilon_{ij} = \frac{1}{2} \left( \frac{\partial x_i}{\partial u_j} + \frac{\partial x_j}{\partial u_i} \right) - \delta_{ij}$$

$$\sigma_{ij}^{(\epsilon)} = \sum_{k=1}^{3} \lambda \epsilon_{kk} \delta_{ij} + 2\mu \epsilon_{ij}$$

$$\eta = \frac{1}{2} \sum_{i=1}^{3} \sum_{j=1}^{3} \sigma_{ij}^{(\epsilon)} \epsilon_{ij}$$

53



Tuesday, November 24, 2009



### Node Forces and Jacobian

- Combine derivative formula w/ equations for elastic energy
- Integrate over volume of element
- Take derivative w.r.t. node positions
- Jacobian core is constant
  - + 12 × 12 made from little 3 × 3 blocks  $oldsymbol{J}_{[i][j]}$

 $oldsymbol{f}_{[i]} = oldsymbol{Q} \, oldsymbol{\sigma} \, oldsymbol{n}_{[i]}$  $oldsymbol{J}_{[i][j]} = -oldsymbol{Q} (\lambda oldsymbol{n}_{[i]} oldsymbol{n}_{[j]}^{\mathsf{T}} + \mu (oldsymbol{n}_{[i]} \cdot oldsymbol{n}_{[j]}) oldsymbol{I} + \mu oldsymbol{n}_{[j]} oldsymbol{n}_{[i]}^{\mathsf{T}}) oldsymbol{Q}^{\mathsf{T}}$ 





Tuesday, November 24, 2009





Tuesday, November 24, 2009





Tuesday, November 24, 2009

### Separation

• Build psuedo-stress at each vertex

$$\varsigma = \frac{1}{2} \left( -\mathbf{m}(\boldsymbol{f}^+) + \sum_{\boldsymbol{f} \in \{\boldsymbol{f}^+\}} \mathbf{m}(\boldsymbol{f}) + \mathbf{m}(\boldsymbol{f}^-) - \sum_{\boldsymbol{f} \in \{\boldsymbol{f}^-\}} \mathbf{m}(\boldsymbol{f}) \right)$$

- Eigen decomposition describes how material is being "pulled apart" at each vertex.
- If positive eigenvector over threshold  $\rightarrow$  fracture



Tuesday, November 24, 2009





Tuesday, November 24, 2009





Tuesday, November 24, 2009





Tuesday, November 24, 2009

### Remeshing

- Remeshing:
  - Fracture plane is normal to max eigenvector
  - Duplicate vertex
  - Split surrounding tetrahedra (Easily implemented as edge splits)

# Splinters are small pieces of geometry attached to a parent element The splinter may stick outside the element Splinters that cross a face are turned on when the face fractures Edge masking, not pre-scoring Artistic control





Tuesday, November 24, 2009





Tuesday, November 24, 2009





Tuesday, November 24, 2009





Tuesday, November 24, 2009





Tuesday, November 24, 2009

Linearization

$$\mathcal{K}(d) + \mathcal{C}(\dot{d}) + \mathcal{M}(\ddot{d}) = f$$
$$Kd + C\dot{d} + M\ddot{d} = f$$
$$K(d + \alpha_1\dot{d}) + M(\alpha_2\dot{d} + \ddot{d}) = f$$
$$C = \alpha_1 K + \alpha_2 M$$





# Diagonalize $K(d + \alpha_1 \dot{d}) + M(\alpha_2 \dot{d} + \ddot{d}) = f$ Generalized eigenproblem: $K \cdot w = \lambda M \cdot w$ $W = L^{-T}V$ $z = W^{-1} \cdot d$ $g = W^T \cdot f$ $\Lambda(z + \alpha_1 \dot{z}) + (\alpha_2 \dot{z} + \ddot{z}) = g$ Tuesday, November 24, 2009

### Individual Modes

$$\lambda_i z_i + (\alpha_1 \lambda_i + \alpha_2) \dot{z}_i + \ddot{z}_i = g_i$$
$$z_i = c_1 e^{t\omega_i^+} + c_2 e^{t\omega_i^-}$$
$$\omega_i^{\pm} = \frac{-(\alpha_1 \lambda_i + \alpha_2) \pm \sqrt{(\alpha_1 \lambda_i + \alpha_2)^2 - 4\lambda_i}}{2}$$

# Fast Computation• Only a pair of complex multiplies per time step $e^{\omega(t+\Delta t)} = e^{\omega(t)}e^{\omega(\Delta t)}$ • No stability limit on step size• Jump to arbitrary point in time• Only keep useful modes

Tuesday, November 24, 2009





Tuesday, November 24, 2009





Tuesday, November 24, 2009

### Sound Examples

### Synthesizing Sounds from Rigid–Body Simulation

James F. O'Brien Chen Shen Christine M. Gatchalian

University of California, Berkeley

ACM SIGGRAPH Symposium on Computer Animation 2002

93