
CS 283
Advanced Computer Graphics

Simulation Basics

James F. O’Brien
Associate Professor

U.C. Berkeley

2

• A solid object that does not deform
• Consists of infinite number of infinitesimal mass points...
• ...that share a single RB transformation
• Rotation + Translation (no shear or scale)

• Rotation and translation vary over time
• Limit of deformable object as

A Rigid Body

xW = R · xL + t

ks→∞

Tuesday, November 24, 2009

3

A Rigid Body

In 2D:

In 3D:

Translation 2 “directions”
Rotation 1 “direction”

Translation 3 “directions”
Rotation 3 “direction”

3 DOF Total

6 DOF Total

2D is boring... we’ll stick to 3D from now on...

Translation and rotation are decoupled

C
en

te
r

of
 m

as
s

4

Translational Motion

v
Just like a point mass:

ṗ = v

v̇ = a = f/m

Note: Recall discussion on integration...

Tuesday, November 24, 2009

5

Rotational Motion

v

ω
Rotation gets a bit odd, as well
see...

Rotational “position”
 Rotation matrix
 Exponential map
 Quaternions

Rotational velocity
 Stored as a vector
 (Also called angular velocity...)
 Measured in radians / second

R

ω

6

Rotational Motion

v

ω Kinetic energy due to rotation:

“Sum energy (from rotation) over
all points in the object”

E =

�

Ω

1

2
ρ ẋ · ẋ du

E =

�

Ω

1

2
ρ([ω×]x) · ([ω×]x) du

Tuesday, November 24, 2009

7

Rotational Motion

v

ω

Angular momentum
 Similar to linear momentum
 Can be derived from rotational energy

H

Figure is a lie if this
really is a sphere...

H =

�

Ω
ρ x× ẋ du

H =

�

Ω
ρ x× (ω × x) du

H =

��

Ω
· · · du

�
ω

H = Iω“Inertia Tensor” not
identity matrix...

H = ∂E/∂ω

8

Inertia Tensor

I=
Z

Ω
ρ




y2+ z2 −xy −xz
−xy z2+ x2 −yz
−xz −yz x2+ y2



du

See example for simple shapes at
 http://scienceworld.wolfram.com/physics/MomentofInertia.html

Can also be computed from polygon models by transforming
volume integral to a surface one.
See paper/code by Brian Mirtich.

Tuesday, November 24, 2009

9

Ḣ
W

= ṘI
L
R

T
ω

W + RI
L
Ṙ

T
ω

W + RI
L
R

T
α

W

Rotational Motion

v

ω
H

Figure is a lie if this really is a sphere...

H
W = I

W
ω

W

Conservation or momentum:

Ḣ
W = 0

Ṙ = ω ×R

H
W = RI

L
R

T
ω

W

α
W = (RI

L
R

T)−1(−ω
W ×H

W)

In other words, things wobble when they
rotate.

10

Rotational Motion

v

ω
H

Figure is a lie if this really is a sphere...

Take care when integrating rotations, they
need to stay rotations.

α
W = (RI

L
R

T)−1 �
(−ω

W ×H
W) + τ

�

τ = f × x

Ṙ = [ω×]R

ω̇ = α

Tuesday, November 24, 2009

11

Couples
• A force / torque pair is a couple
• Also a wrench (I think)

•Many couples are equivalent

τ

f

τ f

12

Constraints
• Simples method is to use spring attachments
• Basically a penalty method

• Spring strength required to get good results may be unreasonably high
• There are ways to cheat in some contexts...

Tuesday, November 24, 2009

13

Constraints

• Articulation constraints
• Spring trick is an example of a full coordinate method
• Better constraint methods exist

• Reduced coordinate methods use DOFs in kinematic skeleton for
simulation
• Much more complex to explain

• Collisions
• Penalty methods can also be used for collisions
• Again, better constraint methods exist

14

A Simple Spring
• Ideal zero-length spring

• Force pulls points together

• Strength proportional to distance

fa→b = ks(b− a)

fb→a = −fa→b

Tuesday, November 24, 2009

15

A Simple Spring
• Energy potential

fa→b = ks(b− a)

fb→a = −fa→b

-2 -1 0 1 2

-2

-1

0

1

2

0

2

4

6

8

-

0

1

2

fa = −∇aE = −
�

∂E

∂ax
,
∂E

∂ay
,
∂E

∂az

�

E = 1/2 ks(b− a) · (b− a)

16

A Simple Spring

• Energy potential: kinetic vs elastic

-6 -4 -2 2 4 6

-1

-0.5

0.5

1

E = 1/2 ks(b− a) · (b− a)

E = 1/2 m(ḃ− ȧ) · (ḃ− ȧ)

Tuesday, November 24, 2009

17

Non-Zero Length Springs

fa→b = ks
b− a

||b− a|| (||b− a|| − l)

Rest length

E = ks (||b− a|| − l)2

-2 -1 0 1 2

-2

-1

0

1

2

0

1

2

3

-

0

1

2

18

Comments on Springs

• Springs with zero rest length are linear

• Springs with non-zero rest length are nonliner
• Force magnitude linear w/ discplacement (from rest length)
• Force direction is non-linear
• Singularity at ||b− a|| = 0

Tuesday, November 24, 2009

19

Damping

• “Mass proportional” damping

• Behaves like viscous drag on all motion
• Consider a pair of masses connected by a spring
• How to model rusty vs oiled spring
• Should internal damping slow group motion of the pair?

• Can help stability... up to a point

f = −kdȧf ȧ

20

Damping

• “Stiffness proportional” damping

• Behaves viscous drag on change in spring length
• Consider a pair of masses connected by a spring
• How to model rusty vs oiled spring
• Should internal damping slow group motion of the pair?

fa = −kd
b− a

||b− a||2
(b− a) · (ḃ− ȧ)

Tuesday, November 24, 2009

21

Spring Constants

• Two ways to model a single spring

l

∆l

∆l/2

l/2

l/2

∆l/2

22

Spring Constants

• Constant gives inconsistent results with different
discretizations

• Change in length is not what we want to measure

• Strain: change in length as fraction of original length

ks

� =
∆l

l0 Nice and simple for 1D...

Tuesday, November 24, 2009

23

Structures from Springs

• Sheets

• Blocks

•Others

24

Structures from Springs
• They behave like what they are (obviously!)

This structure will not resist
shearing

This structure will not resist out-
of-plane bending either...

Tuesday, November 24, 2009

25

Structures from Springs
• They behave like what they are (obviously!)

This structure will resist shearing
but has anisotopic bias

This structure still will not resist
out-of-plane bending

26

• They behave like what they are (obviously!)

Structures from Springs

This structure will resist shearing
Less bias
Interference between spring sets

This structure still will not resist
out-of-plane bending

Tuesday, November 24, 2009

27

• They behave like what they are (obviously!)

Structures from Springs

This structure will resist shearing
Less bias
Interference between spring sets

This structure will resist out-of-
plane bending
Interference between spring sets
Odd behavior

How do we set spring constants?

28

Edge Springs

Bridson et al. / Simulation of Clothing

4. An Accurate Model for Bending

The physics of cloth bending are poorly understood. The dy-
namics of anisotropic fibers twined together and woven into
a sheet of fabric constantly interacting with massive defor-
mations and friction is certainly more difficult to model with
a two-dimensional continuum than for example steel. How-
ever, several basic qualitative properties of such a model can
be identified that are essential for a plausible simulation, and
without these a model is incorrect.

In order to handle unstructured triangle meshes and get
finer, more robust control over bending than in vertex-centric
models, we posit as our basic bending element two trian-
gles sharing an edge. Our bending elements will be based on
the dihedral angle and its rate of change, as in Baraff and
Witkin5 and extended in Grinspun et al.24. We label the ele-
ment as in figure 1, with vertex positions xi and velocities vi,
i= 1, . . . ,4, and angle θ between the normals n1 and n2.

The vector of the four velocities v= (v1,v2,v3,v4) and the
vector of bending forces F = (F1,F2,F3,F4) live in a 12 di-
mensional linear space. One can select a basis for this space
identifying twelve distinct “modes” of motion. For bending
it is natural to select for the first eleven modes the three rigid
body translations, the three (instantaneous) rigid body rota-
tions, the two in-plane motions of vertex 1, the two in-plane
motions of vertex 2, and the one in-line stretching of edge 3–
4. None of these change the dihedral angle, and thus should
not participate in bending force calculations. This leaves the
twelfth mode, the bending mode, which is the unique mode
orthogonal to the other eleven up to an arbitrary scaling fac-
tor. This mode changes the dihedral angle but does not cause
any in-plane deformation or rigid body motion. Let us call
it u = (u1,u2,u3,u4). From the condition of orthogonality
to the in-plane motions of vertices 1 and 2, we find that u1
is parallel to n̂1 and u2 is parallel to n̂2. From the condition
of orthogonality to the in-axis stretching of edge 3–4, we
see that u4− u3 must be in the span of n̂1 and n̂2. Orthog-
onality to the rigid body translations implies that the sum
u1+ u2+ u3+ u4 is zero, and hence u3+ u4 is also in the
span of n̂1 and n̂2, thus u3 and u4 are each in this span. Fi-
nally, after making u orthogonal to rigid rotations (which we
can conveniently choose to be about the axes n̂1, n̂2 and ê)
we end up with

1 2

3
4

n

e

n
1 2

^

^^

n1
^ n2

^

Figure 1: A bending element with dihedral angle π−θ.

u1 = |E|
N1
|N1|2

u2 = |E|
N2
|N2|2

u3 =
(x1− x4) ·E

|E|
N1
|N1|2

+
(x2− x4) ·E

|E|
N2
|N2|2

u4 = −
(x1− x3) ·E

|E|
N1
|N1|2

−
(x2− x3) ·E

|E|
N2
|N2|2

up to an arbitrary scaling factor, where N1 = (x1 − x3)×
(x1−x4) andN2=(x2−x4)×(x2−x3) are the area weighted
normals and E = x4− x3 is the common edge. Thus u1 and
u2 are inversely proportional to their distance from the com-
mon edge, and u3 and u4 are a linear combination of u1 and
u2 based on the barycentric coordinates of x1 and x2 with re-
spect to the common edge. The bending elastic and damping
forcesmust be proportional to this mode. One immediate ob-
servation is that orthogonality to rigid body modes implies
these forces conserve linear and angular momentum. In fact,
every bending model based on two triangles that does not
use exactly these force directions will violate either the fun-
damental conservation laws or will influence in-plane (i.e.
non-bending) deformations. While some may argue that in
reality, in-plane and bending deformations are subtly cou-
pled, the exact nature of this coupling varies between mate-
rials and is not understood for even the simplest fabrics, thus
it is wisest to avoid adding arbitrary and artificial coupling.

For simplicity we choose the magnitude of elastic force
so that

Fei = ke
|E|2

|N1|+ |N2|
sin(θ/2)ui,

for i = 1, . . . ,4. The elastic bending stiffness ke is a mesh-
independent material property, the middle factor scales this
according to the anisotropy of the mesh (so the look of the
cloth doesn’t change significantly with remeshing), and the
sine factor measures how far from flat the cloth is. This is
the simplest quantity to compute that smoothly and mono-
tonically increases from a minimum when sharply folded at
θ = −π, is zero when flat at θ = 0, and rises to a maximum
at the other sharply folded state θ = π. We use the formula
sin(θ/2) = ±

√
(1− n̂1 · n̂2)/2 where the sign is chosen to

match the sign of sinθ, which is just n̂1× n̂2 · ê. Naturally
more complex nonlinear models, e.g. including powers of θ
for increased resistance at sharper angles, are possible. But
we stress that these factors must multiply all of the forces so
that the force directions and proportionalities do not change.

In many cases an artist desires that particular folds should
consistently appear in a character’s clothing to define their
look. Even the best tailoring may not do this when the char-
acter is in motion, but one tool in cloth simulation that can
overcome this is sculpting folds directly into the garment.
We can straightforwardly model this with non-zero rest an-
gles. Other manifolds such as skin, skin-tight synthetic suits,

c© The Eurographics Association 2003.

From Bridson et al., 2003, also see Grinspun et al., 2003

Bridson et al. / Simulation of Clothing

4. An Accurate Model for Bending

The physics of cloth bending are poorly understood. The dy-
namics of anisotropic fibers twined together and woven into
a sheet of fabric constantly interacting with massive defor-
mations and friction is certainly more difficult to model with
a two-dimensional continuum than for example steel. How-
ever, several basic qualitative properties of such a model can
be identified that are essential for a plausible simulation, and
without these a model is incorrect.

In order to handle unstructured triangle meshes and get
finer, more robust control over bending than in vertex-centric
models, we posit as our basic bending element two trian-
gles sharing an edge. Our bending elements will be based on
the dihedral angle and its rate of change, as in Baraff and
Witkin5 and extended in Grinspun et al.24. We label the ele-
ment as in figure 1, with vertex positions xi and velocities vi,
i= 1, . . . ,4, and angle θ between the normals n1 and n2.

The vector of the four velocities v= (v1,v2,v3,v4) and the
vector of bending forces F = (F1,F2,F3,F4) live in a 12 di-
mensional linear space. One can select a basis for this space
identifying twelve distinct “modes” of motion. For bending
it is natural to select for the first eleven modes the three rigid
body translations, the three (instantaneous) rigid body rota-
tions, the two in-plane motions of vertex 1, the two in-plane
motions of vertex 2, and the one in-line stretching of edge 3–
4. None of these change the dihedral angle, and thus should
not participate in bending force calculations. This leaves the
twelfth mode, the bending mode, which is the unique mode
orthogonal to the other eleven up to an arbitrary scaling fac-
tor. This mode changes the dihedral angle but does not cause
any in-plane deformation or rigid body motion. Let us call
it u = (u1,u2,u3,u4). From the condition of orthogonality
to the in-plane motions of vertices 1 and 2, we find that u1
is parallel to n̂1 and u2 is parallel to n̂2. From the condition
of orthogonality to the in-axis stretching of edge 3–4, we
see that u4− u3 must be in the span of n̂1 and n̂2. Orthog-
onality to the rigid body translations implies that the sum
u1+ u2+ u3+ u4 is zero, and hence u3+ u4 is also in the
span of n̂1 and n̂2, thus u3 and u4 are each in this span. Fi-
nally, after making u orthogonal to rigid rotations (which we
can conveniently choose to be about the axes n̂1, n̂2 and ê)
we end up with

1 2

3
4

n

e

n
1 2

^

^^

n1
^ n2

^

Figure 1: A bending element with dihedral angle π−θ.

u1 = |E|
N1
|N1|2

u2 = |E|
N2
|N2|2

u3 =
(x1− x4) ·E

|E|
N1
|N1|2

+
(x2− x4) ·E

|E|
N2
|N2|2

u4 = −
(x1− x3) ·E

|E|
N1
|N1|2

−
(x2− x3) ·E

|E|
N2
|N2|2

up to an arbitrary scaling factor, where N1 = (x1 − x3)×
(x1−x4) andN2=(x2−x4)×(x2−x3) are the area weighted
normals and E = x4− x3 is the common edge. Thus u1 and
u2 are inversely proportional to their distance from the com-
mon edge, and u3 and u4 are a linear combination of u1 and
u2 based on the barycentric coordinates of x1 and x2 with re-
spect to the common edge. The bending elastic and damping
forcesmust be proportional to this mode. One immediate ob-
servation is that orthogonality to rigid body modes implies
these forces conserve linear and angular momentum. In fact,
every bending model based on two triangles that does not
use exactly these force directions will violate either the fun-
damental conservation laws or will influence in-plane (i.e.
non-bending) deformations. While some may argue that in
reality, in-plane and bending deformations are subtly cou-
pled, the exact nature of this coupling varies between mate-
rials and is not understood for even the simplest fabrics, thus
it is wisest to avoid adding arbitrary and artificial coupling.

For simplicity we choose the magnitude of elastic force
so that

Fei = ke
|E|2

|N1|+ |N2|
sin(θ/2)ui,

for i = 1, . . . ,4. The elastic bending stiffness ke is a mesh-
independent material property, the middle factor scales this
according to the anisotropy of the mesh (so the look of the
cloth doesn’t change significantly with remeshing), and the
sine factor measures how far from flat the cloth is. This is
the simplest quantity to compute that smoothly and mono-
tonically increases from a minimum when sharply folded at
θ = −π, is zero when flat at θ = 0, and rises to a maximum
at the other sharply folded state θ = π. We use the formula
sin(θ/2) = ±

√
(1− n̂1 · n̂2)/2 where the sign is chosen to

match the sign of sinθ, which is just n̂1× n̂2 · ê. Naturally
more complex nonlinear models, e.g. including powers of θ
for increased resistance at sharper angles, are possible. But
we stress that these factors must multiply all of the forces so
that the force directions and proportionalities do not change.

In many cases an artist desires that particular folds should
consistently appear in a character’s clothing to define their
look. Even the best tailoring may not do this when the char-
acter is in motion, but one tool in cloth simulation that can
overcome this is sculpting folds directly into the garment.
We can straightforwardly model this with non-zero rest an-
gles. Other manifolds such as skin, skin-tight synthetic suits,

c© The Eurographics Association 2003.

Bridson et al. / Simulation of Clothing

4. An Accurate Model for Bending

The physics of cloth bending are poorly understood. The dy-
namics of anisotropic fibers twined together and woven into
a sheet of fabric constantly interacting with massive defor-
mations and friction is certainly more difficult to model with
a two-dimensional continuum than for example steel. How-
ever, several basic qualitative properties of such a model can
be identified that are essential for a plausible simulation, and
without these a model is incorrect.

In order to handle unstructured triangle meshes and get
finer, more robust control over bending than in vertex-centric
models, we posit as our basic bending element two trian-
gles sharing an edge. Our bending elements will be based on
the dihedral angle and its rate of change, as in Baraff and
Witkin5 and extended in Grinspun et al.24. We label the ele-
ment as in figure 1, with vertex positions xi and velocities vi,
i= 1, . . . ,4, and angle θ between the normals n1 and n2.

The vector of the four velocities v= (v1,v2,v3,v4) and the
vector of bending forces F = (F1,F2,F3,F4) live in a 12 di-
mensional linear space. One can select a basis for this space
identifying twelve distinct “modes” of motion. For bending
it is natural to select for the first eleven modes the three rigid
body translations, the three (instantaneous) rigid body rota-
tions, the two in-plane motions of vertex 1, the two in-plane
motions of vertex 2, and the one in-line stretching of edge 3–
4. None of these change the dihedral angle, and thus should
not participate in bending force calculations. This leaves the
twelfth mode, the bending mode, which is the unique mode
orthogonal to the other eleven up to an arbitrary scaling fac-
tor. This mode changes the dihedral angle but does not cause
any in-plane deformation or rigid body motion. Let us call
it u = (u1,u2,u3,u4). From the condition of orthogonality
to the in-plane motions of vertices 1 and 2, we find that u1
is parallel to n̂1 and u2 is parallel to n̂2. From the condition
of orthogonality to the in-axis stretching of edge 3–4, we
see that u4− u3 must be in the span of n̂1 and n̂2. Orthog-
onality to the rigid body translations implies that the sum
u1+ u2+ u3+ u4 is zero, and hence u3+ u4 is also in the
span of n̂1 and n̂2, thus u3 and u4 are each in this span. Fi-
nally, after making u orthogonal to rigid rotations (which we
can conveniently choose to be about the axes n̂1, n̂2 and ê)
we end up with

1 2

3
4

n

e

n
1 2

^

^^

n1
^ n2

^

Figure 1: A bending element with dihedral angle π−θ.

u1 = |E|
N1
|N1|2

u2 = |E|
N2
|N2|2

u3 =
(x1− x4) ·E

|E|
N1
|N1|2

+
(x2− x4) ·E

|E|
N2
|N2|2

u4 = −
(x1− x3) ·E

|E|
N1
|N1|2

−
(x2− x3) ·E

|E|
N2
|N2|2

up to an arbitrary scaling factor, where N1 = (x1 − x3)×
(x1−x4) andN2=(x2−x4)×(x2−x3) are the area weighted
normals and E = x4− x3 is the common edge. Thus u1 and
u2 are inversely proportional to their distance from the com-
mon edge, and u3 and u4 are a linear combination of u1 and
u2 based on the barycentric coordinates of x1 and x2 with re-
spect to the common edge. The bending elastic and damping
forcesmust be proportional to this mode. One immediate ob-
servation is that orthogonality to rigid body modes implies
these forces conserve linear and angular momentum. In fact,
every bending model based on two triangles that does not
use exactly these force directions will violate either the fun-
damental conservation laws or will influence in-plane (i.e.
non-bending) deformations. While some may argue that in
reality, in-plane and bending deformations are subtly cou-
pled, the exact nature of this coupling varies between mate-
rials and is not understood for even the simplest fabrics, thus
it is wisest to avoid adding arbitrary and artificial coupling.

For simplicity we choose the magnitude of elastic force
so that

Fei = ke
|E|2

|N1|+ |N2|
sin(θ/2)ui,

for i = 1, . . . ,4. The elastic bending stiffness ke is a mesh-
independent material property, the middle factor scales this
according to the anisotropy of the mesh (so the look of the
cloth doesn’t change significantly with remeshing), and the
sine factor measures how far from flat the cloth is. This is
the simplest quantity to compute that smoothly and mono-
tonically increases from a minimum when sharply folded at
θ = −π, is zero when flat at θ = 0, and rises to a maximum
at the other sharply folded state θ = π. We use the formula
sin(θ/2) = ±

√
(1− n̂1 · n̂2)/2 where the sign is chosen to

match the sign of sinθ, which is just n̂1× n̂2 · ê. Naturally
more complex nonlinear models, e.g. including powers of θ
for increased resistance at sharper angles, are possible. But
we stress that these factors must multiply all of the forces so
that the force directions and proportionalities do not change.

In many cases an artist desires that particular folds should
consistently appear in a character’s clothing to define their
look. Even the best tailoring may not do this when the char-
acter is in motion, but one tool in cloth simulation that can
overcome this is sculpting folds directly into the garment.
We can straightforwardly model this with non-zero rest an-
gles. Other manifolds such as skin, skin-tight synthetic suits,

c© The Eurographics Association 2003.

Tuesday, November 24, 2009

Example: Thin Material

29

30

FEM Problem Setup

• Lagrangian Formulation
• Where in space did this material mode to?

• Commonly used for solid materials

• Eulerian Formulation
• What material is at this location in space?

• Commonly used for fluids

Tuesday, November 24, 2009

31

Problem Setup

• Lagrangian Formulation
• Where in space did this material mode to?

• Commonly used for solid materials

x = x(u)

32

Lagrangian Formulation

•Deformation described by mapping from material
(local) to word coordinates

ACM SIGGRAPH 99, Los Angeles, California, August 8–13, 1999

In 1991, Norton and his colleagues presented a technique for
animating 3D solid objects that broke when subjected to large
strains [12]. They simulated a teapot that shattered when dropped
onto a table. Their technique used a spring and mass system to
model the behavior of the object. When the distance between
two attached mass points exceeded a threshold, the simulation sev-
ered the spring connection between them. To avoid having flexi-
ble strings of partially connected material hanging from the object,
their simulation broke an entire cube of springs at once.
Two limitations are inherent in both of these methods. First,

when the material fails, the exact location and orientation of the
fracture are not known. Rather the failure is defined as the entire
connection between two nodes, and the orientation of the fracture
plane is left undefined. As a result, these techniques can only re-
alistically model effects that occur on a scale much larger than the
inter-node spacing.
The second limitation is that fracture surfaces are restricted to the

boundaries in the initial mesh structure. As a result, the fracture pat-
tern exhibits directional artifacts, similar to the “jaggies” that occur
when rasterizing a polygonal edge. These artifacts are particularly
noticeable when the discretization follows a regular pattern. If an ir-
regular mesh is used, then the artifacts may be partially masked, but
the fractures will still be forced onto a path that follows the element
boundaries so that the object can break apart only along predefined
facets.
Other relevant work in the computer graphics literature includes

techniques for modeling static crack patterns and fractures induced
by explosions. Hirota and colleagues described how phenomena
such as the static crack patterns created by drying mud can be mod-
eled using a mass and spring system attached to an immobile sub-
strate [8]. Mazarak et al. use a voxel-based approach to model
solid objects that break apart when they encounter a spherical blast
wave [9]. Neff and Fiume use a recursive pattern generator to di-
vide a planar region into polygonal shards that fly apart when acted
on by a spherical blast wave [10].
Fracture has been studied more extensively in the mechanics lit-

erature, and many techniques have been developed for simulating
and analyzing the behavior of materials as they fail. A number of
theories may be used to describe when and how a fracture will de-
velop or propagate, and these theories have been employed with
various numerical methods including finite element and finite dif-
ference methods, boundary integral equations, and molecular parti-
cle simulations. A comprehensive review of this work can be found
in the book by Anderson [1] and the survey article by Nishioka [11].
Although simulation is used to model fracture both in computer

graphics and in engineering, the requirements of the two fields are
very different. Engineering applications require that the simulation
predict real-world behaviors in an accurate and reliable fashion. In
computer animation, what matters is how the fracture looks, how
difficult it was to make it look that way, and how long it took. Al-
though the technique presented in this paper was developed using
traditional engineering tools, it is an animation technique and relies
on a number of simplifications that would be unacceptable in an
engineering context.

3 Deformations

Fractures arise in materials due to internal stresses created as the
material deforms. Our goal is to model these fractures. In order
to do so, however, we must first be able to model the deformations
that cause them. To provide a suitable framework for modeling
fractures, the deformation method must provide information about
the magnitude and orientation of the internal stresses, and whether
they are tensile or compressive. We would also like to avoid defor-
mation methods in which directional artifacts appear in the stress
patterns and propagate to the resulting fracture patterns.

V

U

W

Y

X

Z

u

u’

x(u)

x(u’)

u’’ x(u’’)

Figure 2: The material coordinates define a 3D parameterization of
the object. The function ()maps points from their location in the
material coordinate frame to their location in the world coordinates.
A fracture corresponds to a discontinuity in ().

We derive our deformation technique by defining a set of differ-
ential equations that describe the aggregate behavior of the material
in a continuous fashion, and then using a finite element method to
discretize these equations for computer simulation. This approach
is fairly standard, and many different deformation models can be
derived in this fashion. The one presented here was designed to be
simple, fast, and suitable for fracture modeling.

3.1 Continuous Model

Our continuous model is based on continuum mechanics, and an ex-
cellent introduction to this area can be found in the text by Fung [7].
The primary assumption in the continuum approach is that the
scale of the effects being modeled is significantly greater than the
scale of the material’s composition. Therefore, the behavior of the
molecules, grains, or particles that compose the material can be
modeled as a continuous media. Although this assumption is often
valid for modeling deformations, macroscopic fractures can be sig-
nificantly influenced by effects that occur at small scales where this
assumption may not be valid. Because we are interested in graph-
ical appearance rather than rigorous physical correctness, we will
put this issue aside and assume that a continuum model is adequate.
We begin the description of the continuous model by defining

material coordinates that parameterize the volume of space occu-
pied by the object being modeled. Let = [u, v, w]T be a vector
in !3 that denotes a location in the material coordinate frame as
shown in Figure 2. The deformation of the material is defined by
the function () = [x, y, z]T that maps locations in the material
coordinate frame to locations in world coordinates. In areas where
material exists, () is continuous, except across a finite number
of surfaces within the volume that correspond to fractures in the
material. In areas where there is no material, () is undefined.
We make use of Green’s strain tensor, , to measure the local

deformation of the material [6]. It can be represented as a 3 × 3
symmetric matrix defined by

εij =

(
∂
∂ui

· ∂
∂uj

)
− δij (1)

where δij is the Kronecker delta:

δij =

{
1 : i = j
0 : i $= j . (2)

This strain metric only measures deformation; it is invariant with re-
spect to rigid body transformations applied to and vanishes when
the material is not deformed. It has been used extensively in the
engineering literature. Because it is a tensor, its invariants do not
depend on the orientation of the material coordinate or world sys-
tems. The Euclidean metric tensor used by Terzopoulos and Fleis-
cher [18] differs only by the δij term.
In addition to the strain tensor, we make use of the strain rate

tensor, , which measures the rate at which the strain is changing.

138

Tuesday, November 24, 2009

33

Example

34

Another Example

V
id

e
o

 f
o

o
ta

ge
 ©

 L
u

ca
sA

rt
s,

 u
se

d
 w

it
h

 p
e

rm
is

si
o

n
.

Tuesday, November 24, 2009

35

Strain

• Strain measures deformation

• Purely geometric

• Example: simple strain in a bar

36

Strain

• Green’s strain tensor

• Vanishes when not deformed

•Only measures deformation

•Does not depend on the coordinate system

�ij =

�
∂x

∂ui
· ∂x

∂uj

�
− δij

Tuesday, November 24, 2009

37

Strain

• Green’s strain tensor

�ij =

�
∂x

∂ui
· ∂x

∂uj

�
− δij

l2x − l2u = d · � · d

Strain

• Cauchy’s strain tensor

• Linearization of Green’s strain tensor

• Vanishes when not deformed

• Not invariant w.r.t rotations

38

�ij =
1
2

�
∂xi

∂uj
+

∂xj

∂ui

�
− δij

lx − lu ≈ d · � · d

Tuesday, November 24, 2009

Linearization Errors

39

We’ll fix this problem later...

40

Strain Rate

• Time derivative of Green’s strain tensor

•Measures rate of deformation

• Used for internal damping

�̇ij =

�
∂x

∂ui
· ∂ẋ

∂uj

�
+

�
∂ẋ

∂ui
· ∂x

∂uj

�

Tuesday, November 24, 2009

41

Strain Rate

• Time derivative of Cauchy’s strain tensor

•Measures rate of deformation

• Used for internal damping

�̇ij =
1
2

�
∂ẋi

∂uj
+

∂ẋj

∂ui

�

42

Stress

• Stress determines internal forces

•Measures how much material “wants” to return to
original shape

t = σ · n̂

Tuesday, November 24, 2009

43

Stress due to Strain

σ
(�)
ij =

3�

k=1

λ�kkδij + 2µ�ij

Elastic (Lamé) Constants

f = kd

Generalization of
(in)compressibility

rigidity

44

Stress due to Rate

f = cvψ

φ

σ(ν)
ij =

3�

k=1

ψ�̇kkδij + 2ψ�̇ij

Damping Constants

Generalization of

Tuesday, November 24, 2009

45

Energy Potentials

Generalization of

Generalization of

E =
1

2
kd2

E =
1

2
mv2

κ =
1

2

3�

i=1

3�

j=1

σ
(ν)
ij �̇ij

η =
1

2

3�

i=1

3�

j=1

σ
(�)
ij �ij

Elastic Energy Density

Kinetic Energy Density

46

Discretization

• Transition from continuous model to something we can
compute with...

Tuesday, November 24, 2009

47

Finite Element Method
•Disjoint elements tile material domain

•Derivatives from shape functions

•Nodes shared by adjacent elements

48

Finite Element Method
•Disjoint elements tile material domain

•Derivatives from shape functions

•Nodes shared by adjacent elements

Tuesday, November 24, 2009

49

FEM Discretization

• Solid volumes

• Tetrahedral elements

• Linear shape functions

50

FEM Discretization
• Each element defined by four nodes
• m - location in material (local) coordinates

• p - position in world coordinates

• v - velocity in world coordinates

ACM SIGGRAPH 99, Los Angeles, California, August 8–13, 1999

(a) (b)

Figure 4: Tetrahedral mesh for a simple object. In (a), only the ex-
ternal faces of the tetrahedra are drawn; in (b) the internal structure
is shown.

(a) (b)
m [2]

m [1]

m [3]

m [4]

p [1]

p [2]
p [3]

p [4]

v [1]

v [2]

v [3]

v [4]

Figure 5: A tetrahedral element is defined by its four nodes. Each
node has (a) a location in the material coordinate system and (b) a
position and velocity in the world coordinate system.

degrees of freedom for deformation, they have few degrees of free-
dom for modeling fracture because the shape of a fracture is defined
as a boundary in material coordinates. In contrast, with linear tetra-
hedra, each degree of freedom in the world space corresponds to a
degree of freedom in the material coordinates. Furthermore, when-
ever an element is created, its basis functions must be computed.
For high-degree polynomials, this computation is relatively expen-
sive. For systems where the mesh is constant, the cost is amortized
over the course of the simulation. However, as fractures develop
and parts of the object are remeshed, the computation of basis ma-
trices can become significant.

Each tetrahedral element is defined by four nodes. A node has
a position in the material coordinates, , a position in the world
coordinates, , and a velocity in world coordinates, . We will refer
to the nodes of a given element by indexing with square brackets.
For example, [2] is the position in material coordinates of the
element’s second node. (See Figure 5.)

Barycentric coordinates provide a natural way to define the linear
shape functions within an element. Let = [b1, b2, b3, b4]T be
barycentric coordinates defined in terms of the element’s material
coordinates so that

[
1

]
=

[
[1]

1
[2]

1
[3]

1
[4]

1

]
. (12)

These barycentric coordinates may also be used to interpolate the
node’s world position and velocity with

[
1

]
=

[
[1]

1
[2]

1
[3]

1
[4]

1

]
(13)

[
˙
1

]
=

[
[1]

1
[2]

1
[3]

1
[4]

1

]
. (14)

To determine the barycentric coordinates of a point within the
element specified by its material coordinates, we invert (12) and
obtain

=
[

1

]
(15)

where is defined by

=
[

[1]

1
[2]

1
[3]

1
[4]

1

]−1

. (16)

Combining (15) with (13) and (14) yields functions that interpolate
the world position and velocity within the element in terms of the
material coordinates:

() =
[

1

]
(17)

˙ () =
[

1

]
(18)

where and are defined as

=
[

[1] [2] [3] [4]

]
(19)

=
[

[1] [2] [3] [4]

]
. (20)

Note that the rows of are the coefficients of the shape functions,
and needs to be computed only when an element is created or the
material coordinates of its nodes change. For non-degenerate ele-
ments, the matrix in (16) is guaranteed to be non-singular, however
elements that are nearly co-planar will cause to be ill-conditioned
and adversely affect the numerical stability of the system.
Computing the values of and within the element requires the

first partials of with respect to :

∂
∂ui

= i (21)

∂ ˙
∂ui

= i (22)

where

i = [δi1 δi2 δi3 0]T . (23)

Because the element’s shape functions are linear, these partials are
constant within the element.
The element will exert elastic and damping forces on its nodes.

The elastic force on the ith node, (ε)
[i] , is defined as the negative

partial of the elastic potential density, η, with respect to [i] inte-

grated over the volume of the element. Given (ε), , and the po-
sitions in world space of the four nodes we can compute the elastic
force by

(ε)
[i] = −vol

2

4∑

j=1

[j]

3∑

k=1

3∑

l=1

βjlβikσ(ε)
kl (24)

where

vol =
1
6
[([2] − [1])× ([3] − [1])] · ([4] − [1]) . (25)

Similarly, the damping force on the ith node, (ν)
[i] , is defined as

the partial of the damping potential density, κ, with respect to [i]

integrated over the volume of the element. This quantity can be
computed with

(ν)
[i] = −vol

2

4∑

j=1

[j]

3∑

k=1

3∑

l=1

βjlβikσ(ν)
kl . (26)

Summing these two forces, the total internal force that an element
exerts on a node is

el
[i] = −vol

2

4∑

j=1

[j]

3∑

k=1

3∑

l=1

βjlβikσkl , (27)

140

Tuesday, November 24, 2009

51

Element Shape Functions

Barycentric coordinates

Invert to obtain basis matrix

where

�
u
1

�

=

�
m[1] m[2] m[3] m[4]

1 1 1 1

�

b

β =

�
m[1] m[2] m[3] m[4]

1 1 1 1

�−1

b = β

�
u
1

�

52

Material Derivatives

World pos. as function of material coordinates

Derivative w.r.t. material coordinates

wherex(u) = P β

�
u
1

�

P =
�
p[1] p[2] p[3] p[4]

�

∂x

∂ui
= P βcoli

�ij =
1
2

�
∂xi

∂uj
+

∂xj

∂ui

�
− δij

Tuesday, November 24, 2009

53

Recall

σ
(�)
ij =

3�

k=1

λ�kkδij + 2µ�ij

η =
1

2

3�

i=1

3�

j=1

σ
(�)
ij �ij

�ij =
1
2

�
∂xi

∂uj
+

∂xj

∂ui

�
− δij

54

Node Forces

• Combine derivative formula w/ equations for elastic
energy

• Integrate over volume of element

• Take derivative w.r.t. node positions

ACM SIGGRAPH 99, Los Angeles, California, August 8–13, 1999

(a) (b)

Figure 4: Tetrahedral mesh for a simple object. In (a), only the ex-
ternal faces of the tetrahedra are drawn; in (b) the internal structure
is shown.

(a) (b)
m [2]

m [1]

m [3]

m [4]

p [1]

p [2]
p [3]

p [4]

v [1]

v [2]

v [3]

v [4]

Figure 5: A tetrahedral element is defined by its four nodes. Each
node has (a) a location in the material coordinate system and (b) a
position and velocity in the world coordinate system.

degrees of freedom for deformation, they have few degrees of free-
dom for modeling fracture because the shape of a fracture is defined
as a boundary in material coordinates. In contrast, with linear tetra-
hedra, each degree of freedom in the world space corresponds to a
degree of freedom in the material coordinates. Furthermore, when-
ever an element is created, its basis functions must be computed.
For high-degree polynomials, this computation is relatively expen-
sive. For systems where the mesh is constant, the cost is amortized
over the course of the simulation. However, as fractures develop
and parts of the object are remeshed, the computation of basis ma-
trices can become significant.

Each tetrahedral element is defined by four nodes. A node has
a position in the material coordinates, , a position in the world
coordinates, , and a velocity in world coordinates, . We will refer
to the nodes of a given element by indexing with square brackets.
For example, [2] is the position in material coordinates of the
element’s second node. (See Figure 5.)

Barycentric coordinates provide a natural way to define the linear
shape functions within an element. Let = [b1, b2, b3, b4]T be
barycentric coordinates defined in terms of the element’s material
coordinates so that

[
1

]
=

[
[1]

1
[2]

1
[3]

1
[4]

1

]
. (12)

These barycentric coordinates may also be used to interpolate the
node’s world position and velocity with

[
1

]
=

[
[1]

1
[2]

1
[3]

1
[4]

1

]
(13)

[
˙
1

]
=

[
[1]

1
[2]

1
[3]

1
[4]

1

]
. (14)

To determine the barycentric coordinates of a point within the
element specified by its material coordinates, we invert (12) and
obtain

=
[

1

]
(15)

where is defined by

=
[

[1]

1
[2]

1
[3]

1
[4]

1

]−1

. (16)

Combining (15) with (13) and (14) yields functions that interpolate
the world position and velocity within the element in terms of the
material coordinates:

() =
[

1

]
(17)

˙ () =
[

1

]
(18)

where and are defined as

=
[

[1] [2] [3] [4]

]
(19)

=
[

[1] [2] [3] [4]

]
. (20)

Note that the rows of are the coefficients of the shape functions,
and needs to be computed only when an element is created or the
material coordinates of its nodes change. For non-degenerate ele-
ments, the matrix in (16) is guaranteed to be non-singular, however
elements that are nearly co-planar will cause to be ill-conditioned
and adversely affect the numerical stability of the system.
Computing the values of and within the element requires the

first partials of with respect to :

∂
∂ui

= i (21)

∂ ˙
∂ui

= i (22)

where

i = [δi1 δi2 δi3 0]T . (23)

Because the element’s shape functions are linear, these partials are
constant within the element.
The element will exert elastic and damping forces on its nodes.

The elastic force on the ith node, (ε)
[i] , is defined as the negative

partial of the elastic potential density, η, with respect to [i] inte-

grated over the volume of the element. Given (ε), , and the po-
sitions in world space of the four nodes we can compute the elastic
force by

(ε)
[i] = −vol

2

4∑

j=1

[j]

3∑

k=1

3∑

l=1

βjlβikσ(ε)
kl (24)

where

vol =
1
6
[([2] − [1])× ([3] − [1])] · ([4] − [1]) . (25)

Similarly, the damping force on the ith node, (ν)
[i] , is defined as

the partial of the damping potential density, κ, with respect to [i]

integrated over the volume of the element. This quantity can be
computed with

(ν)
[i] = −vol

2

4∑

j=1

[j]

3∑

k=1

3∑

l=1

βjlβikσ(ν)
kl . (26)

Summing these two forces, the total internal force that an element
exerts on a node is

el
[i] = −vol

2

4∑

j=1

[j]

3∑

k=1

3∑

l=1

βjlβikσkl , (27)

140

Tuesday, November 24, 2009

Corotational Method
• Factor out rotation using polar decomposition
• Cauchy strain without errors due to rotations

55

QT ∂x

∂u

∂x

∂u

∂x

∂u
→ QF

See paper by
Müller & Gross, 2004

Node Forces and Jacobian

56

f [i] = Qσ n[i]

J [i][j] = −Q(λn[i]n
T
[j] + µ(n[i] · n[j])I + µn[j]n

T
[i])Q

T

• Combine derivative formula w/ equations for elastic
energy

• Integrate over volume of element

• Take derivative w.r.t. node positions

• Jacobian core is constant
• 12 x 12 made from little 3 x 3 blocks J [i][j]

Tuesday, November 24, 2009

57

V
id

e
o

 f
o

o
ta

ge
 ©

 P
ix

e
lu

x
 E

n
te

rt
a
in

m
e

n
t,

 u
se

d
 w

it
h

 p
e

rm
is

si
o

n
.

58

Tuesday, November 24, 2009

Fracture
• Fracture changes the mesh

59

Fracture

60

Tuesday, November 24, 2009

Fracture

61

(a) (b)

Force Decomposition
• Separate tensile / compressive forces

62

σ+ =
3�

i=1

max(0, vi(σ)) m(n̂i(σ))

σ− =
3�

i=1

min(0, vi(σ)) m(n̂i(σ))

m(a) =
�

a aT/|a| : a �= 0
0 : a = 0

Tuesday, November 24, 2009

63

Separation

• Build psuedo-stress at each vertex

• Eigen decomposition describes how material is being
“pulled apart” at each vertex.

• If positive eigenvector over threshold → fracture

ς =
1
2



−m(f+)+
�

f∈{f+}

m(f) + m(f−)−
�

f∈{f−}

m(f)



 .

Remeshing

• Remeshing:
• Fracture plane is normal to max eigenvector
• Duplicate vertex
• Split surrounding tetrahedra

(Easily implemented as edge-splits)

64

Tuesday, November 24, 2009

Remeshing

65

(a) (c)(b)

(a) (b) (c)

Some Tricks: Back-Cracks

66

!open

!turn !turn

!open

!a" !#b"

Problem

Tuesday, November 24, 2009

Some Tricks: Back-Cracks

67

!open

!turn !turn

!open

!a" !#b"

!free
!free

Solution

{

τθ

τ∆

Without Splitting

68

Set thresholds infinite to
suppress splitting

(a) (b)

{

τθ

τ∆

Tuesday, November 24, 2009

69

Example

70

Example

Tuesday, November 24, 2009

Remeshing

• Remeshing:
• Fracture plane is normal to max eigenvector
• Duplicate vertex
• Split surrounding tetrahedra

(Easily implemented as edge-splits)

71

Splinters

• Splinters are small pieces
of geometry attached to
a parent element

• The splinter may stick outside the
element

• Splinters that cross a face are turned
on when the face fractures

• Edge masking, not pre-scoring

• Artistic control
72

Tuesday, November 24, 2009

Splinters

73

V
id

e
o

 f
o

o
ta

ge
 ©

 L
u

ca
sA

rt
s

a
n

d
 P

ix
e

lu
x

 E
n

te
rt

a
in

m
e

n
t,

 u
se

d
 w

it
h

 p
e

rm
is

si
o

n
.

74

Tuesday, November 24, 2009

75

Modal Analysis

76

Deformation

Figure 2: Using a linear formulation to model a bend-
ing bar produces acceptable results for small to moderate
amounts of deformation. For larger deformations signif-
icant amounts of distortion appear. This example shows
the deformation corresponding to the bar’s second trans-
verse mode.

There are also two drawbacks to a modal approach.

First, linearizing the original nonlinear equations means

that the solution will only be a first order approximation

of the true solution. How objectionable the lineariza-

tion error is depends on the application and the extent

to which the objects deform from their initial configura-

tions. As illustrated by figure 2, small to moderate defor-

mations exhibit little or no noticeable error when casually

observed. Even when the errors do grow noticeable, they

have a cartoon-like, exaggerated appearance that may ac-

tually be desirable for some applications.

The second drawback arises because decoupling the

linear system requires computing its eigendecomposition.

However we do not believe that this drawback is partic-

ularly significant. The content in most interactive appli-

cations is constant, so that eigendecompositions can be

precomputed during content development and stored with

the objects. Furthermore, the linear systems are sparse,

so that fast, robust, publicly available codes may be used

to efficiently compute the decompositions (e.g. TRLAN

[29]).

The remainder of this section describes how one com-

putes the modal decomposition for a given object and

how that decomposition can be used to efficiently model

the object’s behavior. Some of this material has been pre-

sented elsewhere by others in the graphics community

(e.g. [10, 19]) but we include it here for completeness.

The discussion will focus in particular on including ma-

nipulation and collision constraints in the modal frame-

work. An overview of the entire process is shown in fig-

ure 3.

3.1 Modal Decomposition

The modal decomposition of a physical system begins

with a linear set of equations that describe the system’s

behavior. In general, the equations describing the system

Generate
tetrahedral mesh

Build
system matrices

Compute
eigen-decomposition

Object geometry
and material properties

Compute
rigid-body parameters

and build
collision structures

Preprocessing

Interactive

Deformable Object Motion

Rigid-body
simulationModal synthesis

Contact/Inertial
Forces

Collision
Geometry

User Interaction Constraints

Figure 3: This diagram illustrates both the preprocessing
steps used to construct the deformable modal model for
an object, and the processes that subsequently generate
interactive motion from this description.

may be nonlinear, and one obtains the linear equations by

linearizing about some point, typically the rest configu-

ration of the system. The linearized equations have the

general form:

Kd + Cḋ + Md̈ = f , (1)

where K, C, and M are respectively known as the sys-

tem’s stiffness, damping, and mass matrices, d and f re-
spectively as the vector of generalized displacements and

forces, and an overdot indicates differentiation with re-

spect to time. The physical meaning of the generalized

force and displacement vectors, and the method for com-

puting the system matrices will depend on the type of

method used for modeling the system. For general fi-

nite element methods, we refer the reader to the excellent

text by Cook, Malkus, and Plesha [5]. We are using an

implementation of the piecewise-linear tetrahedral finite

element method described by O’Brien and Hodgins [16].

Details on computing the system matrices appear in [17].

Modal decomposition refers to the process of diago-

nalizing equation (1). The most general form of modal

decomposition can be used for nearly arbitrary systems,

but the systems arising from the finite element method

we use have a structure that makes them amenable to a

simpler manipulation provided we assume that the damp-

ing matrix, C, is a linear combination of the K and M .

This restriction is known as Rayleigh damping, and al-

though it is a restriction it still produces results superior to

the simple mass damping that is most commonly used in

3

Tuesday, November 24, 2009

77

Example

78

Generate
tetrahedral mesh

Build
system matrices

Compute
eigen-decomposition

Object geometry
and material properties

Compute
rigid-body parameters

and build
collision structures

Preprocessing

Interactive

Animation with audio

Video renderer

Rigid-body
simulationModal synthesis

Audio renderer

Contact
Forces

Figure 2: This diagram illustrates both the preprocessing steps that
are used to construct the audio/visual model for an object, and the
processes that subsequently generate sound and motion from this
description at interactive speeds.

and Pai, 1996] and [van den Doel and Pai, 1998]. They showed
that the analytically computed vibrational modes of simply shaped
objects, such as square plates or cylindrical rods, could be used to
generate sound maps over the object surfaces. They constructed a
system that computed realistic contact sounds when an interactive
user indicated a point on the surfaces of the modeled objects. Be-
cause the maps were generated from the mode shapes, the system
correctly captured the variations that arise when objects are struck
at different locations. More recently, [van den Doel et al., 2001] de-
scribed a method that uses recorded data to construct sound maps
over the surface of an object. In addition to allowing a user to inter-
actively generate sounds by tapping the object surfaces, they used
contact forces from a real-time rigid-body simulation to excite the
sampled modes.

Our work builds on the ideas of these two previous methods by
extending the range of objects that can be modeled to include ones
that are neither simple shapes nor available to be measured. The
analytically computed modes used in [van den Doel and Pai, 1996]
and [van den Doel and Pai, 1998] are the continuous equivalent
of the numerically computed discretized modes described in Sec-
tion 3.1 of this paper. Numerical computation allows determining
the modes for essentially arbitrary shapes as opposed to a few sim-
ple shapes, and it makes fewer assumptions about the underling
differential equations. Our method for driving the sound generation
from a rigid-body simulation is essentially identical to the method
used in [van den Doel et al., 2001], but we have found that useful
results can be generated using “off-the-shelf” rigid-body simulators
and that a special contact method is not necessarily required unless
one wishes to produce rubbing or scraping sounds.

Another related method for generating sound has been described
in [O’Brien et al., 2001]. Their approach uses a nonlinear finite
element method to explicitly model the response of an object to
external forces. Audio is generated by analyzing the computed sur-
face behavior and then applying a set of filters to the computed
motion for extracting frequency components that fall within the au-
dible range. Unlike the method detailed in this paper and the previ-

ously described methods of van den Doel and his colleagues, the use
of a nonlinear finite element method allows them to model sounds
that arise from nonlinear behaviors such as buckling. The main
limitation of their method is that it requires large amounts of com-
putation. In contrast, our method can accurately model only sounds
produced by linear phenomena, but it can compute these sounds in
real-time.
In addition to the above physically motivated work on sound gen-

eration, other prior work in the graphics community has focused
on sound propagation and heuristic approaches to sound genera-
tion. Producing synchronized soundtracks for animations was ad-
dressed in [Takala and Hahn, 1992] and [Hahn et al., 1995]. For
modeling tearing cloth, [Terzopoulos and Fleischer, 1988] gener-
ated soundtracks by playing a pre-recorded sound whenever a con-
nection in a spring mesh failed. Work described in [Savioja et al.,
1997] focused on creating virtual musical performances in virtual
spaces using physically derived models of musical instruments and
acoustic ray-tracing for spatialization of the sound sources. Other
researchers have developed methods for correctly modeling reflec-
tions and transmissions within the sonic environment [Funkhouser
et al., 1998; Funkhouser et al., 1999; Min and Funkhouser, 2000;
Tsingos et al., 2001].
The method described in this paper is also related to previous

work in the graphics community on modeling deformable objects.
The idea of decoupling an object’s rigid-body behavior from it’s
elastic deformation was proposed in [Terzopoulos and Fleischer,
1988] as an efficient method for modeling deformable objects. This
idea was extended in [Pentland andWilliams, 1989] by using modal
analysis for modeling deformable objects, although instead of ac-
tually using the object’s vibrational modes they approximated them
with arbitrary linear and quadratic deformation fields.
Outside the field of computer graphics, an extensive amount of

research on sound modeling has been conducted in the digital sound
and music communities. There the focus has been primarily on ac-
curately modeling the sounds generated by musical instruments, in-
cluding the fine subtleties that distinguish high-quality instruments.
A comprehensive review of the work that has been done in those
areas can be found in [Cook, 2002].

3 Methods

The mechanical dynamics of a solid physical object can be decom-
posed into two components: idealized rigid-body motions and elas-
tic deformations. An object is referred to as being rigid, or incom-
pliant, if its response to typical interactions includes only negligi-
ble deformations. For example, when a person taps the side of a
drinking glass it flexes slightly but the amplitude of this deforma-
tion is small enough to be unobservable by sight. However, this
small deformation may be observable by hearing. In particular, if
the elastic properties of the glass are such that the small deforma-
tion induced by the tap results in vibrations at frequencies between
approximately 20 and 20, 000 Hz, then the small pressure fluctua-
tions caused by the oscillating deformation will be heard as sound.
For further information on the physical process of sound generation
we refer the reader to [Kinsler et al., 2000].

3.1 Modal Analysis

Our method for modeling the sounds generated by rigid objects
makes use of a well studied technique known as modal analysis.
This section presents a brief overview of modal analysis and pro-
vides the framework for describing our methods. We refer the
reader to [Cook et al., 1989] for additional information on modal
analysis.
A physical system that has been discretized using a finite ele-

ment, finite differencing, or other similar method can be expressed
in the following general form:

() + (, ˙) + (¨) = (1)

2

Sound

Tuesday, November 24, 2009

79

Sound Example

80

Modal Decomposition

• Linearize non-linear system

Generate
tetrahedral mesh

Build
system matrices

Compute
eigen-decomposition

Object geometry
and material properties

Compute
rigid-body parameters

and build
collision structures

Preprocessing

Interactive

Animation with audio

Video renderer

Rigid-body
simulationModal synthesis

Audio renderer

Contact
Forces

Figure 2: This diagram illustrates both the preprocessing steps that
are used to construct the audio/visual model for an object, and the
processes that subsequently generate sound and motion from this
description at interactive speeds.

and Pai, 1996] and [van den Doel and Pai, 1998]. They showed
that the analytically computed vibrational modes of simply shaped
objects, such as square plates or cylindrical rods, could be used to
generate sound maps over the object surfaces. They constructed a
system that computed realistic contact sounds when an interactive
user indicated a point on the surfaces of the modeled objects. Be-
cause the maps were generated from the mode shapes, the system
correctly captured the variations that arise when objects are struck
at different locations. More recently, [van den Doel et al., 2001] de-
scribed a method that uses recorded data to construct sound maps
over the surface of an object. In addition to allowing a user to inter-
actively generate sounds by tapping the object surfaces, they used
contact forces from a real-time rigid-body simulation to excite the
sampled modes.

Our work builds on the ideas of these two previous methods by
extending the range of objects that can be modeled to include ones
that are neither simple shapes nor available to be measured. The
analytically computed modes used in [van den Doel and Pai, 1996]
and [van den Doel and Pai, 1998] are the continuous equivalent
of the numerically computed discretized modes described in Sec-
tion 3.1 of this paper. Numerical computation allows determining
the modes for essentially arbitrary shapes as opposed to a few sim-
ple shapes, and it makes fewer assumptions about the underling
differential equations. Our method for driving the sound generation
from a rigid-body simulation is essentially identical to the method
used in [van den Doel et al., 2001], but we have found that useful
results can be generated using “off-the-shelf” rigid-body simulators
and that a special contact method is not necessarily required unless
one wishes to produce rubbing or scraping sounds.

Another related method for generating sound has been described
in [O’Brien et al., 2001]. Their approach uses a nonlinear finite
element method to explicitly model the response of an object to
external forces. Audio is generated by analyzing the computed sur-
face behavior and then applying a set of filters to the computed
motion for extracting frequency components that fall within the au-
dible range. Unlike the method detailed in this paper and the previ-

ously described methods of van den Doel and his colleagues, the use
of a nonlinear finite element method allows them to model sounds
that arise from nonlinear behaviors such as buckling. The main
limitation of their method is that it requires large amounts of com-
putation. In contrast, our method can accurately model only sounds
produced by linear phenomena, but it can compute these sounds in
real-time.
In addition to the above physically motivated work on sound gen-

eration, other prior work in the graphics community has focused
on sound propagation and heuristic approaches to sound genera-
tion. Producing synchronized soundtracks for animations was ad-
dressed in [Takala and Hahn, 1992] and [Hahn et al., 1995]. For
modeling tearing cloth, [Terzopoulos and Fleischer, 1988] gener-
ated soundtracks by playing a pre-recorded sound whenever a con-
nection in a spring mesh failed. Work described in [Savioja et al.,
1997] focused on creating virtual musical performances in virtual
spaces using physically derived models of musical instruments and
acoustic ray-tracing for spatialization of the sound sources. Other
researchers have developed methods for correctly modeling reflec-
tions and transmissions within the sonic environment [Funkhouser
et al., 1998; Funkhouser et al., 1999; Min and Funkhouser, 2000;
Tsingos et al., 2001].
The method described in this paper is also related to previous

work in the graphics community on modeling deformable objects.
The idea of decoupling an object’s rigid-body behavior from it’s
elastic deformation was proposed in [Terzopoulos and Fleischer,
1988] as an efficient method for modeling deformable objects. This
idea was extended in [Pentland andWilliams, 1989] by using modal
analysis for modeling deformable objects, although instead of ac-
tually using the object’s vibrational modes they approximated them
with arbitrary linear and quadratic deformation fields.
Outside the field of computer graphics, an extensive amount of

research on sound modeling has been conducted in the digital sound
and music communities. There the focus has been primarily on ac-
curately modeling the sounds generated by musical instruments, in-
cluding the fine subtleties that distinguish high-quality instruments.
A comprehensive review of the work that has been done in those
areas can be found in [Cook, 2002].

3 Methods

The mechanical dynamics of a solid physical object can be decom-
posed into two components: idealized rigid-body motions and elas-
tic deformations. An object is referred to as being rigid, or incom-
pliant, if its response to typical interactions includes only negligi-
ble deformations. For example, when a person taps the side of a
drinking glass it flexes slightly but the amplitude of this deforma-
tion is small enough to be unobservable by sight. However, this
small deformation may be observable by hearing. In particular, if
the elastic properties of the glass are such that the small deforma-
tion induced by the tap results in vibrations at frequencies between
approximately 20 and 20, 000 Hz, then the small pressure fluctua-
tions caused by the oscillating deformation will be heard as sound.
For further information on the physical process of sound generation
we refer the reader to [Kinsler et al., 2000].

3.1 Modal Analysis

Our method for modeling the sounds generated by rigid objects
makes use of a well studied technique known as modal analysis.
This section presents a brief overview of modal analysis and pro-
vides the framework for describing our methods. We refer the
reader to [Cook et al., 1989] for additional information on modal
analysis.
A physical system that has been discretized using a finite ele-

ment, finite differencing, or other similar method can be expressed
in the following general form:

() + (, ˙) + (¨) = (1)

2

Figure 2: Using a linear formulation to model a bend-
ing bar produces acceptable results for small to moderate
amounts of deformation. For larger deformations signif-
icant amounts of distortion appear. This example shows
the deformation corresponding to the bar’s second trans-
verse mode.

There are also two drawbacks to a modal approach.

First, linearizing the original nonlinear equations means

that the solution will only be a first order approximation

of the true solution. How objectionable the lineariza-

tion error is depends on the application and the extent

to which the objects deform from their initial configura-

tions. As illustrated by figure 2, small to moderate defor-

mations exhibit little or no noticeable error when casually

observed. Even when the errors do grow noticeable, they

have a cartoon-like, exaggerated appearance that may ac-

tually be desirable for some applications.

The second drawback arises because decoupling the

linear system requires computing its eigendecomposition.

However we do not believe that this drawback is partic-

ularly significant. The content in most interactive appli-

cations is constant, so that eigendecompositions can be

precomputed during content development and stored with

the objects. Furthermore, the linear systems are sparse,

so that fast, robust, publicly available codes may be used

to efficiently compute the decompositions (e.g. TRLAN

[29]).

The remainder of this section describes how one com-

putes the modal decomposition for a given object and

how that decomposition can be used to efficiently model

the object’s behavior. Some of this material has been pre-

sented elsewhere by others in the graphics community

(e.g. [10, 19]) but we include it here for completeness.

The discussion will focus in particular on including ma-

nipulation and collision constraints in the modal frame-

work. An overview of the entire process is shown in fig-

ure 3.

3.1 Modal Decomposition

The modal decomposition of a physical system begins

with a linear set of equations that describe the system’s

behavior. In general, the equations describing the system

Generate
tetrahedral mesh

Build
system matrices

Compute
eigen-decomposition

Object geometry
and material properties

Compute
rigid-body parameters

and build
collision structures

Preprocessing

Interactive

Deformable Object Motion

Rigid-body
simulationModal synthesis

Contact/Inertial
Forces

Collision
Geometry

User Interaction Constraints

Figure 3: This diagram illustrates both the preprocessing
steps used to construct the deformable modal model for
an object, and the processes that subsequently generate
interactive motion from this description.

may be nonlinear, and one obtains the linear equations by

linearizing about some point, typically the rest configu-

ration of the system. The linearized equations have the

general form:

Kd + Cḋ + Md̈ = f , (1)

where K, C, and M are respectively known as the sys-

tem’s stiffness, damping, and mass matrices, d and f re-
spectively as the vector of generalized displacements and

forces, and an overdot indicates differentiation with re-

spect to time. The physical meaning of the generalized

force and displacement vectors, and the method for com-

puting the system matrices will depend on the type of

method used for modeling the system. For general fi-

nite element methods, we refer the reader to the excellent

text by Cook, Malkus, and Plesha [5]. We are using an

implementation of the piecewise-linear tetrahedral finite

element method described by O’Brien and Hodgins [16].

Details on computing the system matrices appear in [17].

Modal decomposition refers to the process of diago-

nalizing equation (1). The most general form of modal

decomposition can be used for nearly arbitrary systems,

but the systems arising from the finite element method

we use have a structure that makes them amenable to a

simpler manipulation provided we assume that the damp-

ing matrix, C, is a linear combination of the K and M .

This restriction is known as Rayleigh damping, and al-

though it is a restriction it still produces results superior to

the simple mass damping that is most commonly used in

3

Tuesday, November 24, 2009

81

Modal Decomposition

• Consequences of linearization
• No local rotations

82

Modal Decomposition

where is the vector of node displacements, an overdot indicates
a derivative with respect to time, and are nonlinear functions
that respectively determine the internal forces due to node displace-
ments and node velocities, maps node accelerations to node
momenta, and represents any other (e.g. external) forces. Typi-
cally, the forces determined by are internal elastic forces and
determines damping forces.
In general, equation (1) is nonlinear, however if we assume that

the displacements are small then we may linearize about the sys-
tem’s rest configuration giving:

+ ˙+ ¨= (2)

where , , and are respectively known as the system’s stiff-
ness, damping, and mass matrices. For the physical systems corre-
sponding to solid objects, all three matrices are real and symmet-
ric. Both and are positive semi-definite, and is positive
definite. Linearizing in this fashion is consistent with our goal of
modeling the small-amplitude, high-frequency vibrations in solid
objects that produce sound. Unfortunately, the linearized system
cannot model the rotational components of rigid-body motion. We
will put this issue aside for now, but later we will return to it and
show how the rigid-body modes can be decoupled from all other
modes.
Once we have the linearized system, the next step in the modal

analysis is to perform a series of manipulations that will diagonal-
ize equation (2). To facilitate this process, we will first assume
that = α1 + α2 for some α1 and α2. Expressing the
damping matrix as a linear combination of the stiffness and mass
matrices is known as Raleigh damping. Although this assumption
simplifies diagonalization while still producing good results, it is
not strictly necessary. A more general assumption, known as pro-
portional damping, that expresses the damping matrix as a linear
combination of powers of the stiffness and mass matrices would
also be diagonalized by the process described below but the equa-
tions would be more cumbersome. Additionally, even if for some
reason must be arbitrary, then other, slightly more complicated,
methods are available for decoupling equation (2) [Anderson et al.,
1999; Bai et al., 2000].
Replacing with α1 + α2 gives:

(+ α1 ˙) + (α2 ˙+)̈ = . (3)

Since is symmetric and positive definite, it may be decomposed

using a Cholesky factorization so that = T. If we introduce

another variable, = T , and then rewrite equation (3) in terms
of after pre-multiplying by −1 we then have:

−1 −T(+ α1 ˙) + (α2 ˙ + ¨) = −1 . (4)

The real and symmetric matrix −1 −T can be decomposed

into −1 −T = Λ T where is the orthogonal ma-

trix whose columns are the eigenvectors of −1 −T and Λ is
the diagonal matrix of eigenvalues. Introducing another variable,

= T , and pre-multiplying by T transforms equation (4)
into:

Λ(+ α1 ˙) + (α2 ˙ + ¨) = T −1
(5)

which can be rearranged to give:

Λ + (α1Λ + α2) ˙ + ¨ = (6)

where = T −1 .
At this point the original linear system of equation (3) has been

diagonalized into a set of decoupled oscillators. The i’th row of
equation (6) is the scalar second-order differential equation:

λizi + (α1λi + α2)żi + z̈i = gi (7)

where λi is the i’th entry of the diagonal matrix Λ. Equation (7)
may be solved by numerical integration or it may be solved more
efficiently using the analytic solution:

zi = c1e
tω+

i + c2e
tω−

i (8)

where c1 and c2 are arbitrary (complex) constants, and ωi is the
complex frequency given by

ω±
i =

−(α1λi + α2) ±
√

(α1λi + α2)2 − 4λi

2
. (9)

The absolute value of the imaginary part of ωi is the frequency
(in radians/second, not Hertz) of the mode, and the real part is the
mode’s decay rate.
The decoupled system of equation (6) is not an approximation

of the original linear system in equation (3), it is exactly the same
as the original linear system. Of course the linear system was an
approximation of the original nonlinear one, but any problem that
could be solved using equation (3) could also be solved with equa-
tion (6).
The columns of −T are the vibrational modes of the object

being modeled. (See figure 3.) Each mode has the property that
a displacement or velocity over the object that is a scalar multi-
ple of the mode will produce an acceleration that is also a scalar
multiple of the mode. This property means that the modes do not
interact with each other, which is why decoupling the system into a
set of independent oscillators was possible. The eigenvalue for each
mode is the ratio of the mode’s elastic stiffness to the mode’s mass,
and it is the square of the mode’s natural frequency (in radians per
second). In general the eigenvalues will be nonzero, but for each
free body in the system there will be six zero eigenvalues that cor-
respond to the body’s six rigid-body modes. The rigid-body eigen-
values are zero because a rigid-body displacement will not generate
any elastic forces.

3.2 Rigid Body Simulation

As discussed previously, the rigid-body modes for an object do not
interact with the object’s deformation modes provided the amount

of elastic deformation experienced by the object is small.1 Addi-
tionally, small-amplitude elastic deformations will not significantly
effect the rigid-body collisions between objects. These observa-
tions allow us to model the rigid-body behavior of the objects in al-
most the same way as if we were not interested in generating audio.
The only change that must be made to the rigid-body simulation is
that information about contact forces must be gathered and exported
to another process that will generate the audio. Of course, hearing
the results of the rigid-body simulation, in addition to seeing them,
may reveal previously unnoticed inadequacies of the simulator, but
we have not found this to be a problem with the simulation engines
we have worked with.
We have implemented our system using two existing rigid-body

simulation engines that were not originally designed for generating
audio. Our choice of engines was motivated by what systems were
readily available and how well they were able to model the scenar-
ios we wished to test. The first is a commercial software package,
Vortex, sold by Critical Mass Labs. The second system we are us-
ing had been previously written by Okan Arikan, a graduate student

1Actually, the requirement was that all displacements be small, includ-

ing displacements corresponding to the rigid-body modes. The translation

modes are inherently linear so they cannot interact with the elastic modes

regardless of their magnitude, but for a rapidly rotating body there will be

some coupling between the rotation modes and the elastic ones. Unless the

object is rotating very rapidly or experiencing large angular accelerations,

the coupling between rotation and elastic modes with frequencies in the au-

dible range will be negligible, so we ignore this interaction.

3Tuesday, November 24, 2009

83

Linearization

84

Tuesday, November 24, 2009

85

86

Diagonalize

Generalized eigenproblem:

Tuesday, November 24, 2009

87

Individual Modes

88

•Only a pair of complex multiplies per time step

•No stability limit on step size

• Jump to arbitrary point in time

•Only keep useful modes

Fast Computation

eω(t+∆t) = eω(t)eω(∆t)

Tuesday, November 24, 2009

89

Examples

90

Examples

Tuesday, November 24, 2009

91

PS2 Example

92

PS2 Example

Tuesday, November 24, 2009

93

Sound Examples

Tuesday, November 24, 2009

