#### CS 283 Advanced Computer Graphics

#### **Motion Capture**

James F. O'Brien

Associate Professor U.C. Berkeley

Monday, November 16, 2009

## Motion Capture

- Record motion from physical objects
- Use motion to animate virtual objects



#### Basic Pipeline

Setup

Process



From Rose, *et al.*, 1998

### Captures "Signature" of Actor





## What types of objects?

- Human, whole body
- Portions of body
- Facial animation
- Animals
- Puppets
- Other objects

- Passive Optical
  - Reflective markers
  - IR (typically) illumination
  - Special cameras
    - Fast, high res., filters
  - Triangulate for positions







Images from Motion Analysis

#### **Passive Optical Advantages**

#### Accurate

- Passive Optica Mayouse many markers
  - No cables Accurate
  - May use many markerequency
  - No cables
  - Disadvantages
  - High frequency
    Requires lots of processing Disadvantages Expensive (>\$100K)
    - Requires lots of Occlusions
    - Expensive system
      Marker Swap
    - Occlusions Lighting/camera limitations
    - Marker swap
    - Lighting / camera limitations



- Active Optical
  - Similar to passive but uses LEDs
  - Blink IDs, no marker swap
  - Number of markers trades off w/ frame rate



Phoenix Technology



Phase Space

8

- Magnetic Capture Equipment
  - Transmitter emits field
  - Trackers seMagnetic Trackers
  - Trackers reportansmitter emits rier ntation

**Trackers sense field** 

Trackers report location and orientation





#### Electromagnetic Advantages

- 6 DOF data
- No occlusions
- Less post processing
- Cheaper than optical
- Disadvantages
  - Cables
  - Problems with metal objects
  - Low(er) frequency
  - Limited range
  - Limited number of trackers

#### Electromechanical





Analogus

• Puppets



Digital Image Design

# Realtime Systems



### Facial Mocap





Monday, November 16, 2009

# Performance Capture

- Many studios regard Motion Capture as evil
  - Synonymous with low quality motion
  - No directive / creative control
  - Cheap
- Performance Capture is different
  - Use mocap device as an expressive input device
  - Similar to digital music and MIDI keyboards

#### Different Data





Auto Calibration

$$\mathbf{R}_{k}^{i \to \omega} \mathbf{c}_{i} + \mathbf{t}_{k}^{i \to \omega} = \mathbf{R}_{k}^{P(i) \to \omega} \mathbf{l}_{i} + \mathbf{t}_{k}^{P(i) \to \omega}$$



Monday, November 16, 2009

#### Auto Calibration



#### Auto Calibration

#### Skeletal Parameter Estimation from Optical Motion Capture Data

Adam G. Kirk James F. O'Brien David A. Forsyth

**University of California - Berkeley** 

## Manipulating Motion Data

- Basic tasks
  - Adjusting
  - Blending
  - Transitioning
  - Retargeting
- Building graphs

#### Nature of Motion Data hy is this task not trivial?



Witkin and Popovic, 1995

Subset of motion curves from captured walking motion<sub>From Witkin and Popovic, SIGGRAPH 95</sub>



#### IK on single frames will not work





Rajusting motion function in parts

**Define desired function with** 



# Adjusting

- Select adjustment function from "some nice space"
  - Example C2 B-splines
- Spread modification over reasonable period of time
  - User selects support radius

Adjusting



IK uses control points of the Bspline now

Example: position racket fix right foot fix left toes balance



#### Blending Blending

• Given two motions make a motion that combines qualities of both If given two motions, can we blend them to find a motion 1/2 between them?

$$\boldsymbol{m}_{\alpha}(t) = \alpha \boldsymbol{m}_{a}(t) + (1 - \alpha) \boldsymbol{m}_{b}(t)$$

#### • Assume same DOFs Assume same DOFs

• Assume same parameter mappings Assume same parameter mappings

• Consider blending *slow-walk* and *fast-walk* 



#### • DefinBlending functions to align features in motion

#### **Define timewarp functions**



#### Normalized time is w

• Blend in normalized time

$$\boldsymbol{m}_{\alpha}(w) = \alpha \boldsymbol{m}_{a}(w_{a}) + (1 - \alpha) \boldsymbol{m}_{b}(w_{b})$$

#### • Blend Blend playback rate

$$\frac{\mathrm{d}t}{\mathrm{d}w} = \alpha \frac{\mathrm{d}t}{\mathrm{d}w_a} + (1-\alpha)\alpha \frac{\mathrm{d}t}{\mathrm{d}w_b}$$



- Add seplicit constrains to key points
  - Enforce with IK over time

#### Add explicit constraints to key points



## Blending / Adjustment

- Short edits will tend to look acceptable
- Longer ones will often exhibit problems
- Optimize to improve blends / adjustments
  - Add quality metric on adjustment
  - Minimize accelerations / torques
  - Explicit smoothness constraints
  - Other criteria...

### Multivariate Blending

#### Blending

• Extend blending to multivariate interpolation Extend to multivariate interpolation

"Speed" 
$$\mathbf{m}(w) = \sum_{i} \alpha_{i}(w) \mathbf{m}_{i}(w)$$
  
$$\sum_{i} \alpha_{i}(w) = 1$$
  
"Happiness"

Weights are now barycentric coordiantes

## Multivariate Blending

#### Blending

• Extend blending to multivariate interpolation Extend to multivariate interpolation



Becomes standard interpolation problem... Use standard scattered-data interpolation methods



# Cyclification

- Special case of transitioning
- Both motions are the same
- Need to modify beginning and end of a motion simultaneously

### Transition Graphs

#### **Transition Graphs**



- Hand build motion graphs often used in games
  - Significant amount of work required
  - Limited transitions by design
- Motion graphs can also be built automatically



#### **Transition Graphs**

- Similarity metric
  - Measurement of how similar two frames of motion are
    - Based on joint angles or point positions
    - Must include some measure of velocity
    - Ideally independent of capture setup and skeleton
- Capture a "large" database of motions

- Compute similarity metric between all pairs of frames
  - Maybe expensive
  - Preprocessing step
  - There may be too many good edges



- Compute similarity metric between all pairs of frames
  - Maybe expensive
  - Preprocessing step
  - There may be too many good edges





- Random walks
  - Start in some part of the graph and randomly make transitions
  - Avoid dead ends
  - Useful for "idling" behaviors
- Transitions
  - Use blending algorithm we discussed



- Match imposed requirements
  - Start at a particular location
  - End at a particular location
  - Pass through particular pose
  - Can be solved using dynamic programing
  - Efficiency issues may require approximate solution
  - Notion of "goodness" of a solution

### Reordering



Monday, November 16, 2009

#### **Gleicher et al - "Snap together motion"**



**Slide from Victor Zordan** 

### Content Tags

#### Motion Synthesis from Annotations

Okan Arikan David Forsyth James O'Brien

U.C. Berkeley

# Integrating Physics

- Simulation added to base motion
- Inverse dynamics for matching
- Oracle to assess results

### **Pushing People Around**

Okan Arikan \* David A. Forsyth \*\* James F. O'Brien \*

- \* University of California, Berkeley
- \*\* University of Illinois, Urbana-Champaign

## Integrating Physics

### Dynamic Response for Motion Capture Animation

**Dynamic Response for Motion Capture Animation** Zordan, V. B., Majkowska, A., Chiu, B., Fast, M. ACM SIGGRAPH 2005

# Prior on "good" configurations













**Style-Based Inverse Kinematics** Grochow, Martin, Hertzmann, Popović

# Suggested Reading

- Fourier principles for emotion-based human figure animation, Unuma, Anjyo, and Takeuchi, SIGGRAPH 95
- Motion signal processing, Bruderlin and Williams, SIGGRAPH 95
- Motion warping, Witkin and Popovic, SIGGRAPH 95
- Efficient generation of motion transitions using spacetime constrains, Rose et al., SIGGRAPH 96
- Retargeting motion to new characters, Gleicher, SIGGRAPH 98
- Verbs and adverbs: Multidimensional motion interpolation, Rose, Cohen, and Bodenheimer, IEEE: Computer Graphics and Applications, v. 18, no. 5, 1998

# Suggested Reading

- Retargeting motion to new characters, Gleicher, SIGGRAPH 98
- Footskate Cleanup for Motion Capture Editing, Kovar, Schreiner, and Gleicher, SCA 2002.
- Interactive Motion Generation from Examples, Arikan and Forsyth, SIGGRAPH 2002.
- Motion Synthesis from Annotations, Arikan, Forsyth, and O'Brien, SIGGRAPH 2003.
- Pushing People Around, Arikan, Forsyth, and O'Brien, unpublished.
- Automatic Joint Parameter Estimation from Magnetic Motion Capture Data, O'Brien, Bodenheimer, Brostow, and Hodgins, GI 2000.
- Skeletal Parameter Estimation from Optical Motion Capture Data, Kirk, O'Brien, and Forsyth, CVPR 2005.
- Perception of Human Motion with Different Geometric Models, Hodgins, O'Brien, and Tumblin, IEEE: TVCG 1998.