CS 283
 Advanced Computer Graphics

Motion Capture

James F. O'Brien
Associate Professor
U.C. Berkeley

Motion Capture

- Record motion from physical objects
- Use motion to animate virtual objects

Simplified Pipeline:

Basic Pipeline

From Rose, et al., 1998

Captures "Signature" of Actor

What types of objects?

- Human, whole body
- Portions of body
- Facial animation
- Animals
- Puppets
- Other objects

Capture Equipment

- Passive Optical
- Reflective markers
- IR (typically) illumination
- Special cameras
- Fast, high res., filters
- Triangulate for positions

Images from Motion Analysis

Capture Equipment

- Passive Optical Advantages
- Accurate
- May use many markers
- No cables
- High frequency
- Disadvantages
- Requires lots of processing
- Expensive systems
- Occlusions
- Marker swap

- Lighting / camera limitations

Capture Equipment

- Active Optical
- Similar to passive but uses LEDs
- Blink IDs, no marker swap
- Number of markers trades off w/ frame rate

Phoenix Technology

Capture Equipment

- Magnetic Trackers
- Transmitter emits field
- Trackers sense field
- Trackers report position and orientation

Capture Equipment

- Electromagnetic Advantages
- 6 DOF data
- No occlusions
- Less post processing
- Cheaper than optical
- Disadvantages
- Cables
- Problems with metal objects
- Low(er) frequency
- Limited range
- Limited number of trackers

Capture Equipment

- Electromechanical

Analogus

Capture Equipment

- Puppets

Realtime Systems

Facial Mocap

Performance Capture

- Many studios regard Motion Capture as evil
- Synonymous with low quality motion
- No directive / creative control
- Cheap
- Performance Capture is different
- Use mocap device as an expressive input device
- Similar to digital music and MIDI keyboards

Different Data

Auto Calibration

$$
\begin{aligned}
& \mathbf{R}_{k}^{i \rightarrow \omega} \mathbf{c}_{i}+\mathbf{t}_{k}^{i \rightarrow \omega}=\mathbf{R}_{k}^{P(i) \rightarrow \omega} \mathbf{l}_{i}+\mathbf{t}_{k}^{P(i) \rightarrow \omega} \\
& {\left[\begin{array}{c}
\mathbf{Q}_{0}^{i \rightarrow P(i)} \\
\vdots \\
\mathbf{Q}_{k}^{i \rightarrow P(i)} \\
\vdots \\
\mathbf{Q}_{n-1}^{i \rightarrow P(i)}
\end{array}\right]\left[\begin{array}{c}
\mathbf{c}_{i} \\
\mathbf{l}_{i}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{d}_{0}^{i \rightarrow P(i)} \\
\vdots \\
\mathbf{d}_{k}^{i \rightarrow P(i)} \\
\vdots \\
\mathbf{d}_{n-1}^{i \rightarrow P(i)}
\end{array}\right]}
\end{aligned}
$$

Auto Calibration

"Exercise" \#3

Auto Calibration

Skeletal Parameter Estimation from Optical Motion Capture Data

Adam G. Kirk James F. O'Brien
David A. Forsyth

University of California - Berkeley

Manipulating Motion Data

- Basic tasks
- Adjusting
- Blending
- Transitioning
- Retargeting
- Building graphs

Nature of Motion Data

Witkin and Popovic, 1995

Adjusting

- IK on single frames will not work

Gleicher, SIGGRAPH 98

Adjusting

- Define desired motion function in parts

$$
\boldsymbol{m}^{\boldsymbol{m}(t)=\boldsymbol{m}_{0}(t)+\boldsymbol{d}(t)} \begin{array}{r}
\text { Adjustment } \\
\text { Result after adjustment }
\end{array}
$$

Adjusting

- Select adjustment function from "some nice space"
- Example C2 B-splines
- Spread modification over reasonable period of time
- User selects support radius

Adjusting

IK uses control points of the Bspline now

Example: position racket fix right foot fix left toes balance

Adjusting

Witkin and Popovic SIGGRAPH 95
What if adjustment periods overlap?

Blending

- Given two motions make a motion that combines qualities of both

$$
\boldsymbol{m}_{\alpha}(t)=\alpha \boldsymbol{m}_{a}(t)+(1-\alpha) \boldsymbol{m}_{b}(t)
$$

- Assume same DOFs
- Assume same parameter mappings

Blending

- Consider blending slow-walk and fast-walk

Bruderlin and Williams, SIGGRAPH 95

Blending

- Define timewarp functions to align features in motion

Normalized time is w

Blending

- Blend in normalized time

$$
\boldsymbol{m}_{\alpha}(w)=\alpha \boldsymbol{m}_{a}\left(w_{a}\right)+(1-\alpha) \boldsymbol{m}_{b}\left(w_{b}\right)
$$

- Blend playback rate

$$
\frac{\mathrm{d} t}{\mathrm{~d} w}=\alpha \frac{\mathrm{d} t}{\mathrm{~d} w_{a}}+(1-\alpha) \alpha \frac{\mathrm{d} t}{\mathrm{~d} w_{b}}
$$

Blending

- Blending may still break features in original motions

Blending

- Add explicit constrains to key points
- Enforce with IK over time

Blending / Adjustment

- Short edits will tend to look acceptable
- Longer ones will often exhibit problems
- Optimize to improve blends / adjustments
- Add quality metric on adjustment
- Minimize accelerations / torques
- Explicit smoothness constraints
- Other criteria...

Multivariate Blending

- Extend blending to multivariate interpolation

Multivariate Blending

- Extend blending to multivariate interpolation

Use standard scattered-data
interpolation methods

Transitions

- Transition from one motion to another

Cyclification

- Special case of transitioning
- Both motions are the same
- Need to modify beginning and end of a motion simultaneously

Transition Graphs

Motion Graphs

- Hand build motion graphs often used in games
- Significant amount of work required
- Limited transitions by design
- Motion graphs can also be built automatically

Motion Graphs

- Similarity metric
- Measurement of how similar two frames of motion are
- Based on joint angles or point positions
- Must include some measure of velocity
- Ideally independent of capture setup and skeleton
- Capture a "large" database of motions

Motion Graphs

- Compute similarity metric between all pairs of frames
- Maybe expensive
- Preprocessing step
- There may be too many good edges

Motion Graphs

- Compute similarity metric between all pairs of frames
- Maybe expensive
- Preprocessing step
- There may be too many good edges

Motion Graphs

- Random walks
- Start in some part of the graph and randomly make transitions
- Avoid dead ends
- Useful for "idling" behaviors
- Transitions
- Use blending algorithm we discussed

Motion graphs

- Match imposed requirements
- Start at a particular location
- End at a particular location
- Pass through particular pose
- Can be solved using dynamic programing
- Efficiency issues may require approximate solution
- Notion of "goodness" of a solution

Reordering

Slide from Victor Zordan

Gleicher et al - "Snap together motion"

\square	B			A					
4				A					

Slide from Victor Zordan

Content Tags

Motion Synthesis from Annotations

Okan Arikan
David Forsyth
James O'Brien
U.C. Berkeley

Integrating Physics

- Simulation added to base motion
- Inverse dynamics for matching
- Oracle to assess results

Pushing People Around

Okan Arikan *
David A. Forsyth **
James F. O'Brien *

* University of California, Berkeley
** University of Illinois, Urbana-Champaign

Integrating Physics

Dynamic Response for Motion Capture Animation

Prior on "good" configurations

Style-Based Inverse Kinematics Grochow, Martin, Hertzmann, Popović

Suggested Reading

- Fourier principles for emotion-based human figure animation, Unuma, Anjyo, and Takeuchi, SIGGRAPH 95
- Motion signal processing, Bruderlin and Williams, SIGGRAPH 95
- Motion warping, Witkin and Popovic, SIGGRAPH 95
- Efficient generation of motion transitions using spacetime constrains, Rose et al., SIGGRAPH 96
- Retargeting motion to new characters, Gleicher, SIGGRAPH 98
- Verbs and adverbs: Multidimensional motion interpolation, Rose, Cohen, and Bodenheimer, IEEE: Computer Graphics and Applications, v. I8, no. 5, I998

Suggested Reading

- Retargeting motion to new characters, Gleicher, SIGGRAPH 98
- Footskate Cleanup for Motion Capture Editing, Kovar, Schreiner, and Gleicher, SCA 2002.
- Interactive Motion Generation from Examples, Arikan and Forsyth, SIGGRAPH 2002.
- Motion Synthesis from Annotations, Arikan, Forsyth, and O'Brien, SIGGRAPH 2003.
- Pushing People Around, Arikan, Forsyth, and O'Brien, unpublished.
- Automatic Joint Parameter Estimation from Magnetic Motion Capture Data, O'Brien, Bodenheimer, Brostow, and Hodgins, Gl 2000.
- Skeletal Parameter Estimation from Optical Motion Capture Data, Kirk, O'Brien, and Forsyth, CVPR 2005.
- Perception of Human Motion with Different Geometric Models, Hodgins, O'Brien, and Tumblin, IEEE:TVCG 1998.

