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Motion Capture
• Record motion from physical objects

• Use motion to animate virtual objects

Simplified Pipeline:

Setup and calibrate 
equipment

Record 
performance

Process motion 
data

Generate 
animation
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Basic Pipeline

From Rose, et al., 1998
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Captures “Signature” of Actor
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What types of objects?

• Human, whole body

• Portions of body

• Facial animation

• Animals

• Puppets

• Other objects
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Capture Equipment
• Passive Optical

• Reflective markers

• IR (typically) illumination

• Special cameras 

• Fast, high res., filters

• Triangulate for positions 

Images from Motion Analysis
Monday, November 16, 2009
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Capture Equipment

• Passive Optical Advantages
• Accurate
• May use many markers
• No cables
• High frequency

• Disadvantages
• Requires lots of processing 
• Expensive systems
• Occlusions
• Marker swap 
• Lighting / camera limitations

Capture Equipment

Passive Optical Advantages

Accurate

May use many markers

No cables

High frequency

Disadvantages

Requires lots of processing

Expensive (>$100K)

Occlusions

Lighting/camera limitations

Marker Swap
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Capture Equipment
• Active Optical 

• Similar to passive but uses LEDs
• Blink IDs, no marker swap
• Number of markers trades off w/ frame rate

Phoenix Technology Phase Space

Monday, November 16, 2009
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Capture Equipment

• Magnetic Trackers
• Transmitter emits field

• Trackers sense field

• Trackers report position and orientation

Capture Equipment

Magnetic Trackers

Transmitter emits field

Trackers sense field

Trackers report location
and orientation

Control

May be wireless
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Capture Equipment

• Electromagnetic Advantages
• 6 DOF data
• No occlusions
• Less post processing
• Cheaper than optical

• Disadvantages
• Cables
• Problems with metal objects
• Low(er) frequency
• Limited range
• Limited number of trackers
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11

Capture Equipment
• Electromechanical

Analogus

Monday, November 16, 2009
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Capture Equipment
• Puppets

Digital Image Design
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Realtime Systems
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Facial Mocap
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Performance Capture

• Many studios regard Motion Capture as evil
• Synonymous with low quality motion

• No directive / creative control

• Cheap

• Performance Capture is different
• Use mocap device as an expressive input device

• Similar to digital music and MIDI keyboards
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Auto Calibration
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Torso (Root)

Pelvis

Head

Upper Arm

Lower Arm

Hand

Upper Leg

Lower Leg

Foot

Figure 2: Example of an articulated hierarchy that could be
used to model a human figure. The torso is the root body and the
arrows indicate the outboard direction. For rendering, the skele-
ton model shown here would be replaced with a more realistic
graphical model.

A transformation T i→j consists of an additive, length 3 vec-
tor component, ti→j , and a multiplicative, 3× 3 matrix compo-
nent, Ri→j . We will refer to ti→j as the translational compo-
nent of T i→j and toRi→j as the rotational component of T i→j ,
although in general Ri→j may be any invertible 3 × 3 matrix
transformation.
A point, xi, expressed in the i-th coordinate system may then

be transformed to the j-th coordinate system by

xj = Ri→jxi + ti→j . (1)

A transformation from the i-th coordinate system to the
j-th coordinate system may be inverted so that given T i→j ,
T j→i may be computed by

Rj→i = (Ri→j)−1 (2)
tj→i = (Ri→j)−1(−ti→j), (3)

where (·)−1 indicates matrix inverse.
Because in general the bodies are in motion with respect to

each other and the world coordinate system, the transformations
between coordinate systems change over time. We assume that
the motion data is sampled at n discrete moments in time called
frames, and use T i→j

k to refer to the value of T i→j at frame
k ∈ [0..n − 1].
An articulated hierarchy is described by the topological infor-

mation indicating which bodies are connected to each other and
by geometric information indicating the locations of the con-
necting joints. The topological information takes the form of a
tree1 with a single body located at its root and all other bodies
appearing as nodes within the tree as shown in Figure 2. When
referring to directions relative to the arrangement of the tree, the
inboard direction is towards the root, and the outboard direction
is away from the root. Thus for a joint connecting two bodies, i
and j, the parent body, j, is the inboard body and the child, i, is
the outboard body. Similarly, a joint which connects a body to
its parent is that body’s inboard joint and a joint connecting the

1We discuss the topological cycles created by loop joints in Section 5.

ci

li

Inboard body, j=P(i)

Outboard body, i

Origin of Cj

Origin of Ci

Joint i

Figure 3: Joint diagram showing the location of the rotary
joint between bodies i and j = P (i). The location of the joint is
defined by a vector displacement, ci, relative to the coordinate
system of body i, and a second vector displacement, li, in the
coordinate system of body j.

body to one of its children is an outboard joint. All bodies have
at most one inboard joint but may have multiple outboard joints.
The hierarchy’s topology is defined using a mapping function,

P (·), that maps each body to its parent body so that P (i) =
j will imply that the j-th body is the immediate parent of the
i-th body in the hierarchical tree. The object, τ ∈ [0..m − 1],
with P (τ ) = ω is the root object. To simplify discussion, we
will temporarily assume that P (·) is known a priori. Later, in
Section 3.3, we will show how P (·) may be inferred when only
the T i→ω’s are known.
The geometry of the articulated hierarchy is determined by

specifying the location of each joint in the coordinate frames
of both its inboard body and its outboard body. Because each
body has a single inboard joint, we will index the joints so that
the i-th joint is the inboard joint of the i-th body as shown in
Figure 3.
Let ci refer to the location of the i-th joint in the i-th body’s

(the joint’s outboard body) coordinate system, and let li refer to
the location of the i-th joint in the P (i)-th body’s (the inboard
body’s) coordinate system (see Figure 3). The transformation
of equation (1) that goes from the i-th coordinate system to its
parent’s, P (i), coordinate system can then be re-expressed in
terms of the joint locations, ci and li, and the rotation at the
joint,Ri→P (i), so that

xP (i) = Ri→P (i)
k (xi − ci) + li (4)

= Ri→P (i)
k xi −Ri→P (i)

k ci + li. (5)

3.1 Finding Joint Locations
The general transformation given by equation (1) applies to any
arbitrary hierarchy of bodies. When the bodies are connected
by rotary joints, the relative motion of two connected bodies
must satisfy a constraint that prevents the joint between them
from coming apart. Comparing equation (5) with equation (1)
shows that although rotational terms are the same, the trans-
lational term of equation (1) has been replaced with the con-
strained term, −Ri→P (i)

k ci + li. Using equation (5) to trans-
form the location of ci to the P (i)-th coordinate system will
identically yield li, and equation (5) enforces the constraint that
the joint stay together.
The input transformations for each of the body parts do not

contain any explicit information about joint constraints. How-
ever, if the motion was created by an articulated system, then it
should be possible to express the same transformations hierar-
chically using equation (5) and an appropriate choice of ci and
li for each of the joints. Thus for each pair of parent and child

Graphics Interface 2000
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Manipulating Motion Data

• Basic tasks
• Adjusting
• Blending
• Transitioning
• Retargeting

• Building graphs

Monday, November 16, 2009
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Nature of Motion Data
Adjusting

Why is this task not trivial?

From Witkin and Popovic, SIGGRAPH 95

Witkin and Popovic, 1995

Subset of motion curves from 
captured walking motion.

Monday, November 16, 2009
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Adjusting

• IK on single frames will not work

Adjusting

IK on single frames will not work

From Gleicher, SIGGRAPH 98Gleicher, SIGGRAPH 98

Monday, November 16, 2009
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Adjusting
• Define desired motion function in partsAdjusting

Define desired function with

Result after adjustment

Inital sampled data

Adjustment

Monday, November 16, 2009
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Adjusting

• Select adjustment function from “some nice space”
• Example C2 B-splines

• Spread modification over reasonable period of time
• User selects support radius

Monday, November 16, 2009
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Adjusting

Witkin and Popovic SIGGRAPH 95

IK uses control 
points of the B-
spline now

Example:
  position racket
  fix right foot
  fix left toes
  balance

Monday, November 16, 2009
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Adjusting

Witkin and Popovic SIGGRAPH 95

What if adjustment periods overlap?
Monday, November 16, 2009
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Blending
• Given two motions make a motion that combines qualities 

of both

• Assume same DOFs

• Assume same parameter mappings

Blending

If given two motions, can we blend them
to find a motion 1/2 between them?

Assume same DOFs

Assume same parameter mappings

Monday, November 16, 2009
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Blending
• Consider blending slow-walk and fast-walk

Bruderlin and Williams, SIGGRAPH 95

Monday, November 16, 2009
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Blending
• Define timewarp functions to align features in motion

Define timewarp functions

Blending

Normalized time is w

Monday, November 16, 2009
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Blending
• Blend in normalized time

• Blend playback rate

Blend in normalized time

Blending

Blend playback rate

Blend in normalized time

Blending

Blend playback rate
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Blending
• Blending may still break features in original motions

Blending

Blending may still break "features" in
original motions

Touchdown for Run Touchdown for Walk

Blend misses ground and floats

Monday, November 16, 2009
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Blending

Add explicit constraints to key points

Touchdown for Run Touchdown for Walk

Blending
• Add explicit constrains to key points

• Enforce with IK over time

Monday, November 16, 2009
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Blending / Adjustment

• Short edits will tend to look acceptable

• Longer ones will often exhibit problems

• Optimize to improve blends / adjustments
• Add quality metric on adjustment
• Minimize accelerations / torques
• Explicit smoothness constraints
• Other criteria...

Monday, November 16, 2009



34

Multivariate Blending

• Extend blending to multivariate interpolation
Blending

Extend to multivariate interpolation

"Hippiness"

"Speed"

Weights are now barycentric coordiantes

“Speed”

“Happiness”

Monday, November 16, 2009
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Blending

Extend to multivariate interpolation

"Hippiness"

"Speed"

If we have other examples
place them in the space also

Becomes standard interpolation problem...

Multivariate Blending

• Extend blending to multivariate interpolation

“Speed”

“Happiness”

Use standard scattered-data 
interpolation methods

Monday, November 16, 2009
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Transitions
• Transition from one motion to anotherTransitioning

Transition from motion A to motion B

Perform blend in overlap
region

Monday, November 16, 2009
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Cyclification

• Special case of transitioning

• Both motions are the same

• Need to modify beginning and end of a motion 
simultaneously

Monday, November 16, 2009
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Transition Graphs
Transition Graphs

Flip

Stand

Run

Walk

Sit

Trip

Dance

Monday, November 16, 2009
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Motion Graphs
• Hand build motion graphs often used in games

• Significant amount of work required

• Limited transitions by design

• Motion graphs can also be built automatically

Transition Graphs

Flip

Stand

Run

Walk

Sit

Trip

Dance

Monday, November 16, 2009
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Motion Graphs

• Similarity metric
• Measurement of how similar two frames of motion are

• Based on joint angles or point positions
• Must include some measure of velocity
• Ideally independent of capture setup and skeleton

• Capture a “large” database of motions

Monday, November 16, 2009
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Motion Graphs
• Compute similarity metric between all pairs of frames

• Maybe expensive
• Preprocessing step
• There may be too many good edges

To appear in the ACM SIGGRAPH conference proceedings

2. The motion should not penetrate any objects in the environ-
ment.

3. The body should be at a particular position and orientation at
a particular time.

4. A particular joint should be at a particular position (and
maybe having a specific velocity) at a specific time.

5. The motion should have a specified style (such as happy or
energetic) at a particular time.

Finding paths in the motion graph that satisfy the hard con-
straints and optimize soft constraints involves a graph search. Un-
fortunately, for even a small collection of motions, the graph G has
a large number of edges and straightforward search of this graph is
computationally prohibitive. The main reason is the need to enu-
merate many paths. There are, in general, many perfectly satisfac-
tory motions that satisfy the constraints equally well. For example,
if we require only that the person be at one end of a room at frame 0
and near the other end at frame 5000, unless the room is very large,
there are many motions that satisfy these constraints.

4 Randomized Search

The motion graph is too hard to search with dynamic programming
as there are many valid paths that satisfy the constraints equally
well. There may be substantial differences between equally valid
paths — in the example above, whether you dawdle at one side of
the room or the other is of no significance. This suggests summa-
rizing the graph to a higher level and coarser presentation that is
easier to search. Branch and bound algorithms are of no help here,
because very little pruning is possible.

In order to search the graph G in practical times, we need to do
the search at a variety of levels where we do the large scale mo-
tion construction first and then “tweak” the details so that the mo-
tion is continuous and satisfies the constraints as well as possible.
Coarser levels should have less complexity while allowing us to ex-
plore substantially different portions of the path space. In such a
representation, every level is a summary of the one finer level. Let
G′ ← G′′ ← G′′′ ← · · ·← Gn ← G be such a hierarchical represen-
tation where G′ is the coarsest level and G is the finest. We will first
find a path in G′ and then push it down the hierarchy to a path in G
for synthesis.

4.1 Summarizing the Graph

All the edges between two nodes s and t can be represented in a
matrix Pst . The (i, j)’th entry of Pst contains the weight of the
edge connecting si to t j and infinity if there is no such edge. In

the appendix A, we give one natural cost functionC(si, t j) for edge

weights. We now have:

(Pst)i j =
{

C(si, t j) if there is an edge from si to t j
∞ otherwise.

The cost function explained in section A causes the Pmatrices to
have non-infinite entries to form nearly elliptical groups (figure 2).
This is due to the fact that if two frames are similar, most probably
their preceding and succeeding frames also look similar.

In order to summarize the graph, we cluster the edges of G.
We now have G′, whose nodes are the same as the nodes of G,
and whose edges represent clusters of edges of G in terms of their
f romFrame and toFrame labels. We require that, if there is a cut
between two sequences represented by an edge between two nodes
in G, there be at least one edge between the corresponding nodes in

Clustering

Walking , frame i

R
u
n
n
in

g
, 
fr

am
e 

j
Walking Running

Framei Frame j

Figure 2: Every edge between two nodes representing different mo-
tion clips can be represented as a matrix where the entries corre-
spond to edges. Typically, if there is one edge between two nodes
in our graph, there will be several, because if it is legal to cut from
one frame in the first sequence to another in the second, it will usu-
ally also be legal to cut between neighbors of these frames. This
means that, for each pair of nodes in the graph, there is a matrix
representing the weights of edges between the nodes. The i, j’th
entry in this matrix represents the weight for a cut from the i’th
frame in the first sequence to the j’th frame in the second sequence.
The weight matrix for the whole graph is composed as a collection
of blocks of this form. Summarizing the graph involves compress-
ing these blocks using clustering.

G′. If this were not the case, our summary would rule out potential
paths. In order to insure that this condition holds and because the
graph is very large, we cluster edges connecting every pair of nodes
in G separately. We cluster unconnected edge groups of G from the
P matrices (defined between every pair of nodes) using k-means

[Bishop 1995]. The number of clusters is chosen as
ma joraxislength
minoraxislength

for each group where the axis lengths refer to the ellipse that fits to
the cluster (obtained through Principal Component Analysis).

The nodes of G′ are the same as the nodes of G. The edges con-
necting nodes inG′ are cluster centers for clusters of edges connect-
ing corresponding nodes in G. The centers are computed by taking
the average of the edges in terms of f romFrame, toFrame and cost
values. At this point, every edge in G′ represents many edges in G.
We would like to have a tree of graph representations whose root
is G′, and whose leaves are G. We use k-means clustering to split
each cluster of edges in half at each intermediate level and obtain
a hierarchical representation G′ ← G′′ ← G′′′ ← · · ·← Gn ← G for
the original graph G. This is an instance of Tree-Structured Vector
Quantization [Gersho and Gray 1992].

Thus, in our summarized graph G′, each edge is the root of a
binary tree and represents all the edges in close neighborhood in
terms of the edge labels. Note that the leaf edges are the edges in
the original graph and intermediate edges are the averages of all the
leaf edges beneath them. A path inG represents a sequence of clips;
so does a path in G′, but now the positions of the clip boundaries
are quantized, so there are fewer paths.

4.2 Searching the Summaries

While searching this graph, we would like to be able to generate dif-
ferent alternative motions that achieve the same set of constraints.
During the search, we need to find paths close to optimal solutions
but do not require exact extrema, because they are too hard to find.
This motivates a random search. We used the following search strat-
egy:

3

Arikan and Forsyth, 2002
Monday, November 16, 2009
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Motion Graphs
• Compute similarity metric between all pairs of frames

• Maybe expensive
• Preprocessing step
• There may be too many good edges
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Motion Graphs
• Random walks

• Start in some part of the graph and randomly make transitions
• Avoid dead ends
• Useful for “idling” behaviors 

• Transitions
• Use blending algorithm we discussed

To appear in the ACM SIGGRAPH conference proceedings

Domain of smoothing

Smoothed Signal

Discontinuity Magnitude

0

0.5

Smoothing Function
!0.5

Figure 4: In the synthesized motion, discontinuities in orientation
are inevitable. We deal with these discontinuities using a form of
localized smoothing. At the top left, a discontinuous orientation
signal, with its discontinuity shown at the top right. We now con-
struct an interpolant to this discontinuity, shown on the bottom right
and add it back to the original signal to get the continuous version
shown on the bottom left. Typically, discontinuities in orientation
are sufficiently small that no more complex strategy is necessary.

1. Replace a sequence by selecting two edges ei and ei+ j where

0 ≤ j ≤ n− i, deleting all the edges between them in the
path and connecting the unconnected pieces of the path us-
ing one or two edges in the top level graph G′ (if possible).
Since in the summarized graph, there are relatively fewer
edges, we can quickly find edges that connect the two un-
connected nodes by checking all the edges that go out from
toMotion(ei), and enumerating all the edges that reach to
f romMotion(ei+ j) and generate a valid path. Note that we

enumerate only 0 or 1 hop edges (1 edge or 2 edge connec-
tions respectively).

2. Demoting two edges to their children and replacing them
with one of their children if they can generate a valid path.
Doing this mutation on two edges simultaneously allows us
to compensate for the errors that would happen if only one of
them was demoted.

We check every possible mutation, evaluate them and take the best
few. Since the summary has significantly fewer edges than the orig-
inal graph, this step is not very expensive. If a motion sequence can-
not generate a mutation whose score is lower that itself, we decide
that the current path is a local minimum in the valid path space and
record it as a potential motion. This way, we can obtain multiple
motions that satisfy the same set of constraints.

4.2.3 Creating and Smoothing the Final Path

We create the final motion by taking the frames between
toFrame(ei) and f romFrame(ei+1) from each motion

toMotion(ei) where 1 ≤ i < n (figure 1). This is done by ro-
tating and translating every motion sequence so that each piece
starts from where the previous one ended. In general, at the
frames corresponding to the edges in the path, we will have C0

discontinuities, because of the finite number of motions sampling
an infinite space. In practice these discontinuities are small and
we can distribute them within a smoothing window around the
discontinuity. We do this by multiplying the magnitude of the
discontinuity by a smoothing function and adding the result back to
the signal (figure 4). We choose the smoothing domain to be ±30
frames (or one second of animation) around the discontinuity and

Figure 5: Body constraints allow us to put “checkpoints” on the
motion: in the figure, the arrow on the right denotes the required
starting position and orientation and the arrow on the left is the re-
quired ending position and orientation. All constraints are also time
stamped forcing the body to be at the constraint at the time stamp.
For these two body constraints, we can generate many motions that
satisfy the constraints in real-time.

Figure 6: We can use multiple “checkpoints” in a motion. In this
figure, the motion is required to pass through the arrow (body con-
straint) in the middle on the way from the right arrow to the left.

y( f ) =






0 f < d− s
1
2 ∗ ( f−d+ss )2 d− s≤ f < d

− 1
2 ∗ ( f−d+ss )2 +2∗ ( f−d+ss )−2 d ≤ f ≤ d+ s

0 f > d+ s

as the smoothing function that gives the amount of displacement
for every frame f , where d is the frame of the discontinuity and
s if the smoothing window size (in our case 30). To make sure
that we interpolate the body constraints (i.e. having a particular
position/orientation at a particular frame), we take the difference
between the desired constraint state, subtract the state at the time
of the constraint and distribute this difference uniformly over the
portion of the motion before the time of the constraint. Note that
these “smoothing” steps can cause artifacts like feet penetrating or
sliding on the ground. However, usually the errors made in terms
of constraints and the discontinuities are so small that they are un-
noticeable.

4.3 Authoring Human Motions

Using iterative improvements of random paths, we are able to syn-
thesize human looking motions interactively. This allows interac-
tive manipulation of the constraints. This is important, because mo-
tion synthesis is inherently ambiguous as there may be multiple mo-
tions that satisfy the same set of constraints. The algorithm can find
these “local minimum” motions that adhere to the same constraints.
The animator can choose between them or all the different motions

5
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Motion graphs

• Match imposed requirements
• Start at a particular location
• End at a particular location
• Pass through particular pose
• Can be solved using dynamic programing
• Efficiency issues may require approximate solution
• Notion of “goodness” of a solution

Monday, November 16, 2009
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Integrating Physics
• Simulation added to base motion
• Inverse dynamics for matching
• Oracle to assess results

48

Monday, November 16, 2009



Integrating Physics
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Dynamic Response for Motion Capture Animation
Zordan, V. B., Majkowska, A., Chiu, B., Fast, M.
ACM SIGGRAPH 2005

Monday, November 16, 2009
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50

To appear in ACM Trans. on Graphics (Proc. SIGGRAPH’04)

0.1 for larger data sets. During synthesis, we first run a few steps of
optimization using the smoothed model (α ′, β ′, γ ′), as described in
the previous section. We then run additional steps on an interme-
diate model, with parameters interpolated as 1√

2α + (1− 1√
2 )α

′.
The same interpolation is applied to β and γ . We then finish the
optimization with respect to the original model (α , β , γ). During
interactive editing, there may not be enough time to fully optimize
between dragging steps, in which case the optimization is only up-
dated with respect to the smoothest model; in this case, the finer
models are only used when dragging stops.

6.3 Style interpolation
We now describe a simple new approach to interpolating between
two styles represented by SGPLVMs. Our goal is to generate a new
style-specific SGPLVM that interpolates two existing SGPLVMs
LIK0 and LIK1. Given an interpolation parameter s, the new objec-
tive function is:

Ls(x0,x1,y(q)) = (1− s)LIK0(x0,y(q))+ sLIK1(x1,y(q)) (9)

Generating new poses entails optimizing Ls with respect to the pose
q as well a latent variables x0 and x1 (one for each of the original
styles).
We can place this interpolation scheme in the context of the fol-

lowing novel method for interpolating style-specific PDFs. Given
two or more pose styles— represented by PDFs over possible poses
— our goal is to produce a new PDF representing a style that is “in
between” the input poses. Given two PDFs over poses p(y|θ0) and
p(y|θ1), where θ0 and θ1 describe the parameters of these styles,
and an interpolation parameter s, we form the interpolated style
PDF as

ps(y) ∝ exp((1− s) ln p(y|θ0)+ s ln p(y|θ1)) (10)

New poses are created by maximizing ps(y(q)). In the SGPLVM
case, we have ln p(y|θ0) = −LIK0 and ln p(y|θ0) = −LIK1. We
discuss the motivation for this approach in Appendix C.

7 Applications
In order to explore the effectiveness of the style-based IK, we tested
it on a few applications: interactive character posing, trajectory
keyframing, realtime motion capture with missing markers, and de-
termining human pose from 2D image correspondences. Examples
of all these applications are shown in the accompanying video.

7.1 Interactive character posing
One of the most basic — and powerful — applications of our sys-
tem is for interactive character posing, in which an animator can
interactively define a character pose by moving handle constraints
in real-time. In our experience, posing this way is substantially
faster and more intuitive than posing without an objective function.

7.2 Trajectory keyframing
We developed a test animation system aimed at rapid-prototyping
of character animations. In this system, the animator creates an an-
imation by constraining a small set of points on the character. Each
constrained point is controlled by modifying a trajectory curve. The
animation is played back in realtime so that the animator can im-
mediately view the effects of path modifications on the resulting
motion. Since the animator constrains only a minimal set of points,
the rest of the pose for each time frame is automatically synthesized
using style-based IK. The user can use different styles for different

Figure 4: Trajectory keyframing, using a style learned from the
baseball pitch data. Top row: A baseball pitch. Bottom row: A
side-arm pitch. In each case, the feet and one arm were keyframed;
no other constraints were used. The side-arm contains poses very
different from those in the original data.

parts of the animation, by smoothly blending from one style to an-
other. An example of creating a motion by keyframing is shown in
Figure 4, using three keyframed markers.

7.3 Real-time motion capture with missing mark-
ers

In optical motion capture systems, the tracked markers often dis-
appear due to occlusion, resulting in inaccurate reconstructions and
noticeable glitches. Existing joint reconstruction methods quickly
fail if several markers go missing, or they are missing for an ex-
tended period of time. Furthermore, once the a set of missing mark-
ers reappears, it is hard to relabel each one of them so that they
correspond to the correct points on the body.
We designed a real-time motion reconstruction system based on

style-based IK that fills in missing markers. We learn the style from
the initial portion of the motion capture sequence, and use that style
to estimate the character pose. In our experiments, this approach
can faithfully reconstruct poses even with more than 50% of the
markers missing.
We expect that our method could be used to provide a metric

for marker matching as well. Of course, the effectiveness of style-
based IK degrades if the new motion diverges from the learned
style. This could potentially be addressed by incrementally relearn-
ing the style as the new pose samples are processed.

7.4 Posing from 2D images
We can also use our IK system to reconstruct the most likely pose
from a 2D image of a person. Given a photograph of a person, a user
interactively specifies 2D projections (i.e., image coordinates) of a
few character handles. For example, the user might specify the lo-
cation of the hands and feet. Each of these 2D positions establishes
a constraint that the selected handle project to the 2D position indi-
cated by the user, or, in other words, that the 3D handle lie on the
line containing the camera center and the projected position. The
3D pose is then estimated by minimizing LIK subject to these 2D
constraints. With only three or four established correspondences
between the 2D image points and character handles, we can recon-
struct the most likely pose; with a little additional effort, the pose
can be fine-tuned. Several examples are shown in Figure 5. In
the baseball example (bottom row of the figure) the system obtains
a plausible pose from six projection constraints, but the depth of

6

To appear in ACM Trans. on Graphics (Proc. SIGGRAPH’04)

Figure 1: SGPLVM latent spaces learned from different motion capture sequences: a walk cycle, a jump shot, and a baseball pitch. Points:
The learning process estimates a 2D position x associated with every training pose; plus signs (+) indicate positions of the original training
points in the 2D space. Red points indicate training poses included in the training set. Poses: Some of the original poses are shown along
with the plots, connected to their 2D positions by orange lines. Additionally, some novel poses are shown, connected by green lines to their
positions in the 2D plot. Note that the new poses extrapolate from the original poses in a sensible way, and that the original poses have been
arranged so that similar poses are nearby in the 2D space. Likelihood plot: The grayscale plot visualizes −D

2 lnσ2(x)− 1
2 ||x||

2 for each
position x. This component of the inverse kinematics likelihood LIK measures how “good” x is. Observe that points are more likely if they
lie near or between similar training poses.

optimizing the model parameters, optimizing the latent variables,
and selecting the active set. These algorithms and their tradeoffs are
described in Appendix B. We require that the user specify the size
M of the active set, although this could also be specified in terms
of an error tolerance. Choosing a larger active set yields a better
model, whereas a smaller active set will lead to faster performance
during both learning and synthesis.

New poses. Once the parameters have been learned, we have a
general-purpose probability distribution for new poses. The objec-
tive function for a new pose parameterized by x and y is:

LIK(x,y) =
||W(y− f(x))||2

2σ2(x)
+
D
2
lnσ2(x)+

1
2
||x||2 (3)

where

f(x) = µ +YTK−1k(x) (4)

σ2(x) = k(x,x)−k(x)TK−1k(x) (5)

= α +β−1− ∑
1≤i, j≤M

(K−1)i jk(x,xi)k(x,x j) (6)

and K is the kernel matrix for the active set, Y = [y1−µ , ...,yM−
µ ]T is the matrix of active set points (mean-subtracted), and k(x) is
a vector in which the i-th entry contains k(x,xi), i.e., the similarity
between x and the i-th point in the active set. The vector f(x) is the
pose that the model would predict for a given x; this is equivalent to
RBF interpolation of the training poses. The variance σ2(x) indi-
cates the uncertainty of this prediction; the certainty is greatest near
the training data. The derivation of LIK is given in Appendix A.
The objective function LIK can be interpreted as follows. Op-

timization of a (x,y) pair tries to simultaneously keep the y close
to the corresponding prediction f(x) (due to the ||W(y− f(x))||2
term), while keeping the x value close to the training data (due to

the lnσ2(x) term), since this is where the prediction is most reli-
able. The 12 ||x||

2 term has very little effect on this process, and is
included mainly for consistency with learning.

6 Pose synthesis
We now describe novel algorithms for performing IK with SG-
PLVMs. Given a set of motion capture poses {qi}, we compute the
corresponding feature vectors yi (as described in Section 4), and
then learn an SGPLVM from them as described in the previous sec-
tion. Learning gives us a latent space coordinate xi for each pose yi,
as well as the parameters of the SGPLVM (α , β , γ, and {wk}). In
Figure 1, we show SGPLVM likelihood functions learned from dif-
ferent training sequences. These visualizations illustrate the power
of the SGPLVM to learn a good arrangement of the training poses
in the latent space, while also learning a smooth likelihood func-
tion near the spaces occupied by the data. Note that the PDF is not
simply a matter of, for example, Gaussian distributions centered at
each training data point, since the spaces inbetween data points are
more likely than spaces equidistant but outside of the training data.
The objective function is smooth but multimodal.
Overfitting is a significant problem for many popular PDF mod-

els, particularly for small datasets without redundancy (such as the
ones shown here). The SGPLVM avoids overfitting and yields
smooth objective functions both for large and for small data sets
(the technical reason for this is that it marginalizes over the space
of model representations [MacKay 1998], which properly takes into
account uncertainty in the model). In Figure 2, we compare with an-
other common PDF model, a mixtures-of-Gaussians (MoG) model
[Bishop 1995; Redner and Walker 1984], which exhibits problems
with both overfitting and local minima during learning1. In addi-

1TheMoGmodel is similar to what has been used previously for learning
in motion capture. Roughly speaking, both the SHMM [Brand and Hertz-
mann 2000] and SLDS [Li et al. 2002] reduce to MoGs in synthesis, if we

4

Style-Based Inverse Kinematics
Grochow, Martin, Hertzmann, Popovic ́  

Monday, November 16, 2009



51

Suggested Reading

• Fourier principles for emotion-based human figure animation, 
Unuma, Anjyo, and Takeuchi, SIGGRAPH 95

• Motion signal processing, Bruderlin and Williams, SIGGRAPH 95

• Motion warping, Witkin and Popovic, SIGGRAPH 95

• Efficient generation of motion transitions using spacetime 
constrains, Rose et al., SIGGRAPH 96

• Retargeting motion to new characters, Gleicher, SIGGRAPH 98

• Verbs and adverbs: Multidimensional motion interpolation, Rose, 
Cohen, and Bodenheimer, IEEE: Computer Graphics and 
Applications, v. 18, no. 5, 1998

Monday, November 16, 2009



52

Suggested Reading
• Retargeting motion to new characters, Gleicher, SIGGRAPH 98

• Footskate Cleanup for Motion Capture Editing, Kovar, Schreiner, and Gleicher, SCA 
2002. 

• Interactive Motion Generation from Examples, Arikan and Forsyth, SIGGRAPH 2002.

• Motion Synthesis from Annotations, Arikan, Forsyth, and O'Brien, SIGGRAPH 2003.

• Pushing People Around, Arikan, Forsyth, and O'Brien, unpublished.

• Automatic Joint Parameter Estimation from Magnetic Motion Capture Data, O'Brien, 
Bodenheimer, Brostow, and Hodgins, GI 2000.

• Skeletal Parameter Estimation from Optical Motion Capture Data, Kirk, O'Brien, and 
Forsyth, CVPR 2005.

• Perception of Human Motion with Different Geometric Models, Hodgins, O'Brien, and 
Tumblin, IEEE: TVCG 1998.

Monday, November 16, 2009


