
CS 294-13
Advanced Computer Graphics

Rotations and Inverse Kinematics

James F. O’Brien
Associate Professor

U.C. Berkeley

2

Rotations
• 3D Rotations fundamentally more complex than in 2D

• 2D: amount of rotation
• 3D: amount and axis of rotation

-vs-

2D 3D

Thursday, November 12, 2009

3

Rotations
• Rotations still orthonormal

•

• Preserve lengths and distance to origin

• 3D rotations DO NOT COMMUTE!

• Right-hand rule

• Unique matrices

Det(R) = 1 �=−1

DO NOT COMMUTE!

4

Axis-aligned 3D Rotations
• 2D rotations implicitly rotate about a third out of plane

axis

Thursday, November 12, 2009

5

Axis-aligned 3D Rotations

• 2D rotations implicitly rotate about a third out of plane
axis

R=
�
cos(θ) −sin(θ)
sin(θ) cos(θ)

�
R=

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0
0 0 1

6

Axis-aligned 3D Rotations

R=

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0
0 0 1

R=

1 0 0
0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)

R=

cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)

x̂

ŷ

ẑ

ẑ

x̂

ŷ

Thursday, November 12, 2009

6

Axis-aligned 3D Rotations

R=

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0
0 0 1

R=

1 0 0
0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)

R=

cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)

x̂

ŷ

ẑ

“Z is in your face”

ẑ

x̂

ŷ

7

Axis-aligned 3D Rotations

R=

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0
0 0 1

R=

1 0 0
0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)

R=

cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)

x̂

ŷ

ẑ

x̂

ŷ

ẑ
Also right handed “Zup”

Thursday, November 12, 2009

8

Axis-aligned 3D Rotations
• Also known as “direction-cosine” matrices

R=

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0
0 0 1

R=

1 0 0
0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)

 R=

cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)

ẑ

x̂ ŷ

9

Arbitrary Rotations

• Can be built from axis-aligned matrices:

• Result due to Euler... hence called

 Euler Angles

• Easy to store in vector

• But NOT a vector.

R= rot(x,y,z)

R= Rẑ ·Rŷ ·Rx̂

Thursday, November 12, 2009

10

Arbitrary Rotations

R= Rẑ ·Rŷ ·Rx̂

R

RẑRŷRx̂

11

Arbitrary Rotations

• Allows tumbling

• Euler angles are non-unique

• Gimbal-lock

• Moving -vs- fixed axes
• Reverse of each other

Thursday, November 12, 2009

12

Exponential Maps
• Direct representation of arbitrary rotation

• AKA: axis-angle, angular displacement vector

• Rotate degrees about some axis

• Encode by length of vector

θ

θ

θ= |r| r̂
θ

13

Exponential Maps
• Given vector , how to get matrix

• Method from text:
1. rotate about x axis to put r into the x-y plane
2. rotate about z axis align r with the x axis
3. rotate degrees about x axis
4. undo #2 and then #1
5. composite together

r R

θ

Thursday, November 12, 2009

14

Exponential Maps

• Vector expressing a point has two parts
• does not change
• rotates like a 2D point

x
r

x

⊥x ⊥xr

⊥x
x

15

Exponential Maps

θ

x

x�

−x⊥ = r̂× (r̂×x) x⊥

x
r

x

⊥x ⊥xr

x� = r̂×x

−x⊥cos(θ)

x� sin(θ)
x� = x|| +x� sin(θ)+x⊥cos(θ)

Thursday, November 12, 2009

16

x� = r̂(r̂ ·x)
+sin(θ)(r̂×x)
−cos(θ)(r̂× (r̂×x))

Exponential Maps

• Rodriguez Formula

x

r

x

!x
!x

r

Actually a minor variation ...

16

x� = r̂(r̂ ·x)
+sin(θ)(r̂×x)
−cos(θ)(r̂× (r̂×x))

Exponential Maps

• Rodriguez Formula

x

r

x

!x
!x

r

Actually a minor variation ...

Linear in x

Thursday, November 12, 2009

17

Exponential Maps

• Building the matrix

x� = ((r̂r̂t)+ sin(θ)(r̂×)− cos(θ)(r̂×)(r̂×))x

(r̂×) =

0 −r̂z r̂y
r̂z 0 −r̂x
−r̂y r̂x 0

Antisymmetric matrix
(a×)b= a×b
Easy to verify by expansion

18

Exponential Maps

• Allows tumbling

• No gimbal-lock!

• Orientations are space within π-radius ball

• Nearly unique representation

• Singularities on shells at 2π
• Nice for interpolation

Thursday, November 12, 2009

19

ex = 1+
x
1!

+
x2

2!
+
x3

3!
+ · · ·

Exponential Maps
• Why exponential?

• Recall series expansion of ex

20

• Why exponential?
• Recall series expansion of
• Euler : what happens if you put in for

eiθ = 1+
iθ
1!

+
−θ2

2!
+
−iθ3

3!
+
θ4

4!
+ · · ·

Exponential Maps

ex
iθ x

=
�
1+

−θ2

2!
+
θ4

4!
+ · · ·

�
+ i

�
θ
1!

+
−θ3

3!
+ · · ·

�

= cos(θ)+ isin(θ)
Thursday, November 12, 2009

21

• Why exponential?

Exponential Maps

e(r̂×)θ = I+ (r̂×)θ
1!

+
(r̂×)2θ2

2!
+

(r̂×)3θ3

3!
+

(r̂×)4θ4

4!
+ · · ·

e(r̂×)θ = I+ (r̂×)θ
1!

+
(r̂×)2θ2

2!
+
−(r̂×)θ3

3!
+
−(r̂×)2θ4

4!
+ · · ·

(r̂×)3 =−(r̂×)But notice that:

22

Exponential Maps

e(r̂×)θ = I+ (r̂×)θ
1!

+
(r̂×)2θ2

2!
+
−(r̂×)θ3

3!
+
−(r̂×)2θ4

4!
+ · · ·

e(r̂×)θ = (r̂×)
�
θ
1!
− θ3

3!
+ · · ·

�
+ I+(r̂×)2

�
+
θ2

2!
− θ4

4!
+ · · ·

�

e(r̂×)θ = (r̂×)sin(θ)+ I+(r̂×)2(1− cos(θ))

Thursday, November 12, 2009

23

Quaternions

• More popular than exponential maps

• Natural extension of

• Due to Hamilton (1843)
• Interesting history
• Involves “hermaphroditic monsters”

eiθ = cos(θ)+ isin(θ)

24

i2 = j2 = k2 =−1

Quaternions
• Uber-Complex Numbers

q = (z1,z2,z3,s) = (z,s)
q = iz1+ jz2+ kz3+ s

i j = k ji=−k
jk = i k j =−i
ki= j ik =− j

Thursday, November 12, 2009

25

||q||2 = z · z+ s2 = q · q
∗

Quaternions
• Multiplication natural consequence of defn.

• Conjugate

• Magnitude

q · p = (zqsp+ zpsq+ zp× zq , spsq− zp · zq)

q
∗ = (−z,s)

26

Quaternions
• Vectors as quaternions

• Rotations as quaternions

• Rotating a vector

• Composing rotations

v = (v,0)

r = (r̂sinθ
2
,cos

θ
2
)

x
� = r · x · r

∗

r = r1 · r2 Compare to Exp. Map

Thursday, November 12, 2009

27

Quaternions

• No tumbling

• No gimbal-lock

• Orientations are “double unique”

• Surface of a 3-sphere in 4D

• Nice for interpolation

||r|| = 1

Interpolation

28

Thursday, November 12, 2009

29

Rotation Matrices
• Eigen system

• One real eigenvalue
• Real axis is axis of rotation
• Imaginary values are 2D rotation as complex number

• Logarithmic formula

θ= cos−1
�
Tr(R)−1

2

�

(r̂×) = ln(R) =
θ

2sinθ
(R−RT)

Similar formulae as for exponential...

30

Rotation Matrices
• Consider :

• Columns are coordinate axes after transformation (true
for general matrices)

• Rows are original axes in original system (not true for
general matrices)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

100
010
001

zzzyzx

yzyyyx

xzxyxx

rrr
rrr
rrr

RI

Thursday, November 12, 2009

31

Forward Kinematics
• Articulated skeleton

• Topology (what’s connected to what)
• Geometric relations from joints
• Independent of display geometry
• Tree structure

• Loop joints break “tree-ness”

32

Forward Kinematics
• Root body

• Position set by “global” transformation
• Root joint

• Position
• Rotation

• Other bodies relative to root

• Inboard toward the root
• Outboard away from root

Thursday, November 12, 2009

33

Forward Kinematics
• A joint

• Joint’s inboard body
• Joint’s outboard body

34

Forward Kinematics
• A body

• Body’s inboard joint
• Body’s outboard joint

• May have several outboard joints

Thursday, November 12, 2009

35

Forward Kinematics
• A body

• Body’s inboard joint
• Body’s outboard joint

• May have several outboard joints
• Body’s parent
• Body’s child

• May have several children

36

Forward Kinematics
• Interior joints

• Typically not 6 DOF joints
• Pin - rotate about one axis
• Ball - arbitrary rotation
• Prism - translation along one axis

Thursday, November 12, 2009

37

Forward Kinematics
• Pin Joints

• Translate inboard joint to local origin
• Apply rotation about axis
• Translate origin to location of joint on outboard body

38

Forward Kinematics
• Ball Joints

• Translate inboard joint to local origin
• Apply rotation about arbitrary axis
• Translate origin to location of joint on outboard body

Thursday, November 12, 2009

39

Forward Kinematics
• Prismatic Joints

• Translate inboard joint to local origin
• Translate along axis
• Translate origin to location of joint on outboard body

40

Forward Kinematics

• Composite transformations up the hierarchy

Thursday, November 12, 2009

41

Forward Kinematics

• Composite transformations up the hierarchy

42

Forward Kinematics

• Composite transformations up the hierarchy

Thursday, November 12, 2009

43

Forward Kinematics

• Composite transformations up the hierarchy

44

Forward Kinematics

• Composite transformations up the hierarchy

Thursday, November 12, 2009

45

Inverse Kinematics

• Given
• Root transformation
• Initial configuration
• Desired end point location

• Find
• Interior parameter settings

46

Inverse Kinematics
Eg

on
 P

as
zt

or

Thursday, November 12, 2009

47

Inverse Kinematics
• A simple two segment arm in 2D

Simple System: A Two Segment Arm

Warning: Z!up Coordinate System

48

Inverse Kinematics
• Direct IK: solve for the parameters

Direct IK: Solve for and

Thursday, November 12, 2009

49

Inverse Kinematics
• Why is the problem hard?

• Multiple solutions separated in configuration spaceWhy is this a hard problem?

Multiple solutions separated in
configuration space

50

Inverse Kinematics
• Why is the problem hard?

• Multiple solutions connected in configuration space
Why is this a hard problem?

Multiple solutions connected in
configuration space

Thursday, November 12, 2009

51

Inverse Kinematics
• Why is the problem hard?

• Solutions may not always exist

52

Inverse Kinematics

• Numerical Solution
• Start in some initial configuration
• Define an error metric (e.g. goal pos - current pos)
• Compute Jacobian of error w.r.t. inputs
• Apply Newton’s method (or other procedure)
• Iterate...

Thursday, November 12, 2009

53

Inverse Kinematics
• Recall simple two segment arm:

Simple System: A Two Segment Arm

Warning: Z!up Coordinate System

54

Inverse Kinematics
• We can write of the derivatives

Simple System: A Two Segment Arm

Thursday, November 12, 2009

55

Inverse Kinematics

Simple System: A Two Segment Arm

Direction in Config. Space

56

Inverse Kinematics

The Jacobian (of p w.r.t. !)

Example for two segment arm

Thursday, November 12, 2009

57

Inverse Kinematics

The Jacobian (of p w.r.t. !)

58

Inverse Kinematics

Solving for and

Thursday, November 12, 2009

59

Inverse Kinematics

Solving for and

Is the Jacobian invertible?

60

Inverse Kinematics
• Problems

• Jacobian may (will!) not always be invertible
• Use pseudo inverse (SVD)
• Robust iterative method

• Jacobian is not constant

• Nonlinear optimization, but problem is (mostly) well behaved

Problems...

Jacobian may (will) not be invertible

Option #1: Use pseudo inverse (SVD)

Option #2: Use iterative method

Jacobian is not constant

Non!linear optimization...
but problem is well behaved (mostly)

Thursday, November 12, 2009

61

Inverse Kinematics

Prism Joints

}}

62

Inverse Kinematics

Ball Joints

Thursday, November 12, 2009

63

Inverse Kinematics

Ball Joints (moving axis)

That is the Jacobian for this joint

{

64

Inverse Kinematics

Ball Joints (fixed axis)

That is the Jacobian for this joint

{

Thursday, November 12, 2009

65

Inverse Kinematics
• Many links / joints

• Need a generic method for building JacobianMany Links/Joints

We need a generic method of building Jacobian

1

2a

3

2b

66

Inverse Kinematics
• Can’t just concatenate individual matrices

Many Links/Joints

1

2a

3

2b

Thursday, November 12, 2009

67

Inverse Kinematics
Many Links/Joints

Transformation from body to world

Rotation from body to world

68

Inverse Kinematics
Many Links/Joints

Need to transform Jacobians to common
coordinate system (WORLD)

2b

3

1

2a
2b

3

Thursday, November 12, 2009

69

Inverse Kinematics
Many Links/Joints

Note: Each row in the above
should be transposed....

A Cheap Alternative

• Estimate Jacobian (or parts of it) using finite differences

• Cyclic Coordinate Descent
• Solve for each DOF one at a time
• Iterate till good enough / run out of time

70

Thursday, November 12, 2009

71

Inverse Kinematics

• More complex systems
• More complex joints (prism and ball)
• More links
• Other criteria (COM or height)
• Hard constraints (eg foot plants)
• Unilateral constraints (eg joint limits)
• Multiple criteria and multiple chains

• Smoothness over time
• DOF are determined by control points of a curve (chain rule)

72

Inverse Kinematics

• Some issues
• How to pick from multiple solutions?
• Robustness when no solutions
• Contradictory solutions
• Smooth interpolation

• Interpolation aware of constraints

Thursday, November 12, 2009

Prior on “good” configurations

73

To appear in ACM Trans. on Graphics (Proc. SIGGRAPH’04)

0.1 for larger data sets. During synthesis, we first run a few steps of
optimization using the smoothed model (α ′, β ′, γ ′), as described in
the previous section. We then run additional steps on an interme-
diate model, with parameters interpolated as 1√

2α + (1− 1√
2)α

′.
The same interpolation is applied to β and γ . We then finish the
optimization with respect to the original model (α , β , γ). During
interactive editing, there may not be enough time to fully optimize
between dragging steps, in which case the optimization is only up-
dated with respect to the smoothest model; in this case, the finer
models are only used when dragging stops.

6.3 Style interpolation
We now describe a simple new approach to interpolating between
two styles represented by SGPLVMs. Our goal is to generate a new
style-specific SGPLVM that interpolates two existing SGPLVMs
LIK0 and LIK1. Given an interpolation parameter s, the new objec-
tive function is:

Ls(x0,x1,y(q)) = (1− s)LIK0(x0,y(q))+ sLIK1(x1,y(q)) (9)

Generating new poses entails optimizing Ls with respect to the pose
q as well a latent variables x0 and x1 (one for each of the original
styles).
We can place this interpolation scheme in the context of the fol-

lowing novel method for interpolating style-specific PDFs. Given
two or more pose styles— represented by PDFs over possible poses
— our goal is to produce a new PDF representing a style that is “in
between” the input poses. Given two PDFs over poses p(y|θ0) and
p(y|θ1), where θ0 and θ1 describe the parameters of these styles,
and an interpolation parameter s, we form the interpolated style
PDF as

ps(y) ∝ exp((1− s) ln p(y|θ0)+ s ln p(y|θ1)) (10)

New poses are created by maximizing ps(y(q)). In the SGPLVM
case, we have ln p(y|θ0) = −LIK0 and ln p(y|θ0) = −LIK1. We
discuss the motivation for this approach in Appendix C.

7 Applications
In order to explore the effectiveness of the style-based IK, we tested
it on a few applications: interactive character posing, trajectory
keyframing, realtime motion capture with missing markers, and de-
termining human pose from 2D image correspondences. Examples
of all these applications are shown in the accompanying video.

7.1 Interactive character posing
One of the most basic — and powerful — applications of our sys-
tem is for interactive character posing, in which an animator can
interactively define a character pose by moving handle constraints
in real-time. In our experience, posing this way is substantially
faster and more intuitive than posing without an objective function.

7.2 Trajectory keyframing
We developed a test animation system aimed at rapid-prototyping
of character animations. In this system, the animator creates an an-
imation by constraining a small set of points on the character. Each
constrained point is controlled by modifying a trajectory curve. The
animation is played back in realtime so that the animator can im-
mediately view the effects of path modifications on the resulting
motion. Since the animator constrains only a minimal set of points,
the rest of the pose for each time frame is automatically synthesized
using style-based IK. The user can use different styles for different

Figure 4: Trajectory keyframing, using a style learned from the
baseball pitch data. Top row: A baseball pitch. Bottom row: A
side-arm pitch. In each case, the feet and one arm were keyframed;
no other constraints were used. The side-arm contains poses very
different from those in the original data.

parts of the animation, by smoothly blending from one style to an-
other. An example of creating a motion by keyframing is shown in
Figure 4, using three keyframed markers.

7.3 Real-time motion capture with missing mark-
ers

In optical motion capture systems, the tracked markers often dis-
appear due to occlusion, resulting in inaccurate reconstructions and
noticeable glitches. Existing joint reconstruction methods quickly
fail if several markers go missing, or they are missing for an ex-
tended period of time. Furthermore, once the a set of missing mark-
ers reappears, it is hard to relabel each one of them so that they
correspond to the correct points on the body.
We designed a real-time motion reconstruction system based on

style-based IK that fills in missing markers. We learn the style from
the initial portion of the motion capture sequence, and use that style
to estimate the character pose. In our experiments, this approach
can faithfully reconstruct poses even with more than 50% of the
markers missing.
We expect that our method could be used to provide a metric

for marker matching as well. Of course, the effectiveness of style-
based IK degrades if the new motion diverges from the learned
style. This could potentially be addressed by incrementally relearn-
ing the style as the new pose samples are processed.

7.4 Posing from 2D images
We can also use our IK system to reconstruct the most likely pose
from a 2D image of a person. Given a photograph of a person, a user
interactively specifies 2D projections (i.e., image coordinates) of a
few character handles. For example, the user might specify the lo-
cation of the hands and feet. Each of these 2D positions establishes
a constraint that the selected handle project to the 2D position indi-
cated by the user, or, in other words, that the 3D handle lie on the
line containing the camera center and the projected position. The
3D pose is then estimated by minimizing LIK subject to these 2D
constraints. With only three or four established correspondences
between the 2D image points and character handles, we can recon-
struct the most likely pose; with a little additional effort, the pose
can be fine-tuned. Several examples are shown in Figure 5. In
the baseball example (bottom row of the figure) the system obtains
a plausible pose from six projection constraints, but the depth of

6

To appear in ACM Trans. on Graphics (Proc. SIGGRAPH’04)

Figure 1: SGPLVM latent spaces learned from different motion capture sequences: a walk cycle, a jump shot, and a baseball pitch. Points:
The learning process estimates a 2D position x associated with every training pose; plus signs (+) indicate positions of the original training
points in the 2D space. Red points indicate training poses included in the training set. Poses: Some of the original poses are shown along
with the plots, connected to their 2D positions by orange lines. Additionally, some novel poses are shown, connected by green lines to their
positions in the 2D plot. Note that the new poses extrapolate from the original poses in a sensible way, and that the original poses have been
arranged so that similar poses are nearby in the 2D space. Likelihood plot: The grayscale plot visualizes −D

2 lnσ2(x)− 1
2 ||x||

2 for each
position x. This component of the inverse kinematics likelihood LIK measures how “good” x is. Observe that points are more likely if they
lie near or between similar training poses.

optimizing the model parameters, optimizing the latent variables,
and selecting the active set. These algorithms and their tradeoffs are
described in Appendix B. We require that the user specify the size
M of the active set, although this could also be specified in terms
of an error tolerance. Choosing a larger active set yields a better
model, whereas a smaller active set will lead to faster performance
during both learning and synthesis.

New poses. Once the parameters have been learned, we have a
general-purpose probability distribution for new poses. The objec-
tive function for a new pose parameterized by x and y is:

LIK(x,y) =
||W(y− f(x))||2

2σ2(x)
+
D
2
lnσ2(x)+

1
2
||x||2 (3)

where

f(x) = µ +YTK−1k(x) (4)

σ2(x) = k(x,x)−k(x)TK−1k(x) (5)

= α +β−1− ∑
1≤i, j≤M

(K−1)i jk(x,xi)k(x,x j) (6)

and K is the kernel matrix for the active set, Y = [y1−µ , ...,yM−
µ]T is the matrix of active set points (mean-subtracted), and k(x) is
a vector in which the i-th entry contains k(x,xi), i.e., the similarity
between x and the i-th point in the active set. The vector f(x) is the
pose that the model would predict for a given x; this is equivalent to
RBF interpolation of the training poses. The variance σ2(x) indi-
cates the uncertainty of this prediction; the certainty is greatest near
the training data. The derivation of LIK is given in Appendix A.
The objective function LIK can be interpreted as follows. Op-

timization of a (x,y) pair tries to simultaneously keep the y close
to the corresponding prediction f(x) (due to the ||W(y− f(x))||2
term), while keeping the x value close to the training data (due to

the lnσ2(x) term), since this is where the prediction is most reli-
able. The 12 ||x||

2 term has very little effect on this process, and is
included mainly for consistency with learning.

6 Pose synthesis
We now describe novel algorithms for performing IK with SG-
PLVMs. Given a set of motion capture poses {qi}, we compute the
corresponding feature vectors yi (as described in Section 4), and
then learn an SGPLVM from them as described in the previous sec-
tion. Learning gives us a latent space coordinate xi for each pose yi,
as well as the parameters of the SGPLVM (α , β , γ, and {wk}). In
Figure 1, we show SGPLVM likelihood functions learned from dif-
ferent training sequences. These visualizations illustrate the power
of the SGPLVM to learn a good arrangement of the training poses
in the latent space, while also learning a smooth likelihood func-
tion near the spaces occupied by the data. Note that the PDF is not
simply a matter of, for example, Gaussian distributions centered at
each training data point, since the spaces inbetween data points are
more likely than spaces equidistant but outside of the training data.
The objective function is smooth but multimodal.
Overfitting is a significant problem for many popular PDF mod-

els, particularly for small datasets without redundancy (such as the
ones shown here). The SGPLVM avoids overfitting and yields
smooth objective functions both for large and for small data sets
(the technical reason for this is that it marginalizes over the space
of model representations [MacKay 1998], which properly takes into
account uncertainty in the model). In Figure 2, we compare with an-
other common PDF model, a mixtures-of-Gaussians (MoG) model
[Bishop 1995; Redner and Walker 1984], which exhibits problems
with both overfitting and local minima during learning1. In addi-

1TheMoGmodel is similar to what has been used previously for learning
in motion capture. Roughly speaking, both the SHMM [Brand and Hertz-
mann 2000] and SLDS [Li et al. 2002] reduce to MoGs in synthesis, if we

4

Style-Based Inverse Kinematics
Grochow, Martin, Hertzmann, Popovic ́

Thursday, November 12, 2009

