CS 294-I3
 Advanced Computer Graphics

Rotations and Inverse Kinematics

James F. O'Brien

Associate Professor
U.C. Berkeley

Thursday, November 12, 2009

	Rotations
- Rotations still orthonormal	
- Det $(\mathbf{R})=1 \neq-1$	
- Preserve lengths and distance to origin	
- 3D rotations DO NOT COMMUTE!	
- Right-hand rule DO NOT COMMUTE!	
- Unique matrices	

Thursday, November 12, 2009

Axis-aligned 3D Rotations

- 2 D rotations implicitly rotate about a third out of plane axis
$\mathbf{R}=\left[\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right] \quad \mathbf{R}=\left[\begin{array}{ccc}\cos (\theta) & -\sin (\theta) & 0 \\ \sin (\theta) & \cos (\theta) & 0 \\ 0 & 0 & 1\end{array}\right]$
\diamond

Axis-aligned 3D Rotations

$$
\begin{aligned}
& \mathbf{R}_{i}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\theta) & -\sin (\theta) \\
0 & \sin (\theta) & \cos (\theta)
\end{array}\right] \\
& \mathbf{R}_{i}=\left[\begin{array}{ccc}
\cos (\theta) & 0 & \sin (\theta) \\
0 & 1 & 0 \\
-\sin (\theta) & 0 & \cos (\theta)
\end{array}\right] \\
& \mathbf{R}_{i}=\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Thursday, November 12, 2009

Axis-aligned 3D Rotations

$$
\begin{aligned}
& \mathbf{R}_{i}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\theta) & -\sin (\theta) \\
0 & \sin (\theta) & \cos (\theta)
\end{array}\right] \\
& \mathbf{R}_{y}=\left[\begin{array}{ccc}
\cos (\theta) & 0 & \sin (\theta) \\
0 & 1 & 0 \\
-\sin (\theta) & 0 & \cos (\theta)
\end{array}\right] \\
& \mathbf{R}_{z}=\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Axis-aligned 3D Rotations

$$
\begin{aligned}
& \mathbf{R}_{x}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\theta) & -\sin (\theta) \\
0 & \sin (\theta) & \cos (\theta)
\end{array}\right] \\
& \mathbf{R}_{y}=\left[\begin{array}{ccc}
\cos (\theta) & 0 & \sin (\theta) \\
0 & 1 & 0 \\
-\sin (\theta) & 0 & \cos (\theta)
\end{array}\right] \\
& \mathbf{R}_{z}=\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Thursday, November 12, 2009

Axis-aligned 3D Rotations

- Also known as "direction-cosine" matrices

$$
\begin{gathered}
\mathbf{R}_{x}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\theta) & -\sin (\theta) \\
0 & \sin (\theta) & \cos (\theta)
\end{array}\right] \quad \mathbf{R}_{y}=\left[\begin{array}{ccc}
\cos (\theta) & 0 & \sin (\theta) \\
0 & 1 & 0 \\
-\sin (\theta) & 0 & \cos (\theta)
\end{array}\right] \\
\mathbf{R}_{z}=\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

Thursday, November 12, 2009

Thursday, November 12, 2009

	Exponential Maps
- Direct representation of arbitrary rotation	
- AKA: axis-angle, angular displacement vector	
- Rotate θ degrees about some axis	
- Encode θ by length of vector	
$\theta=\mid \mathbf{r \|}$	

Exponential Maps

- Given vector \mathbf{r}, how to get matrix \mathbf{R}
- Method from text:

1. rotate about x axis to put \mathbf{r} into the $x-y$ plane
2. rotate about z axis align \mathbf{r} with the x axis
3. rotate $\boldsymbol{\theta}$ degrees about x axis
4. undo \#2 and then \# I
5. composite together

Thursday, November 12, 2009

Thursday, November 12, 2009

Thursday, November 12, 2009

Exponential Maps

- Building the matrix

$$
\mathbf{x}^{\prime}=\left(\left(\hat{\mathbf{r}} \hat{\mathbf{r}}^{\mathrm{t}}\right)+\sin (\theta)(\hat{\mathbf{r}} \times)-\cos (\theta)(\hat{\mathbf{r}} \times)(\hat{\mathbf{r}} \times)\right) \mathbf{x}
$$

$$
(\hat{\mathbf{r}} \times)=\left[\begin{array}{ccc}
0 & -\hat{r}_{z} & \hat{r}_{y} \\
\hat{r}_{z} & 0 & -\hat{r}_{x} \\
-\hat{r}_{y} & \hat{r}_{x} & 0
\end{array}\right]
$$

Antisymmetric matrix
$(\mathbf{a} \times) \mathbf{b}=\mathbf{a} \times \mathbf{b}$
Easy to verify by expansion

Exponential Maps

- Allows tumbling
- No gimbal-lock!
- Orientations are space within π-radius ball
- Nearly unique representation
- Singularities on shells at 2π
- Nice for interpolation

Thursday, November 12, 2009

Exponential Maps

-Why exponential?

- Recall series expansion of \boldsymbol{e}^{x}

$$
e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
$$

Exponential Maps

-Why exponential?

- Recall series expansion of e^{x}
- Euler: what happens if you put in $i \theta$ for x

$$
\begin{aligned}
& e^{i \theta}=1+\frac{i \theta}{1!}+\frac{-\theta^{2}}{2!}+\frac{-i \theta^{3}}{3!}+\frac{\theta^{4}}{4!}+\cdots \\
& =\left(1+\frac{-\theta^{2}}{2!}+\frac{\theta^{4}}{4!}+\cdots\right)+i\left(\frac{\theta}{1!}+\frac{-\theta^{3}}{3!}+\cdots\right) \\
& =\cos (\theta)+i \sin (\theta)
\end{aligned}
$$

Thursday, November 12, 2009

Exponential Maps

- Why exponential?

$$
\begin{gathered}
e^{(\hat{\mathbf{r}} \times) \theta}=\mathbf{I}+\frac{(\hat{\mathbf{r}} \times) \theta}{1!}+\frac{(\hat{\mathbf{r}} \times)^{2} \theta^{2}}{2!}+\frac{(\hat{\mathbf{r}} \times)^{3} \theta^{3}}{3!}+\frac{(\hat{\mathbf{r}} \times)^{4} \theta^{4}}{4!}+\cdots \\
\text { But notice that: }(\hat{\mathbf{r}} \times)^{3}=-(\hat{\mathbf{r}} \times) \\
e^{(\hat{\mathbf{r}} \times) \theta}=\mathbf{I}+\frac{(\hat{\mathbf{r}} \times) \theta}{1!}+\frac{(\hat{\mathbf{r}} \times)^{2} \theta^{2}}{2!}+\frac{-(\hat{\mathbf{r}} \times) \theta^{3}}{3!}+\frac{-(\hat{\mathbf{r}} \times)^{2} \theta^{4}}{4!}+\cdots
\end{gathered}
$$

Exponential Maps

$e^{(\hat{\mathbf{r}} \times) \theta}=\mathbf{I}+\frac{(\hat{\mathbf{r}} \times) \theta}{1!}+\frac{(\hat{\mathbf{r}} \times)^{2} \theta^{2}}{2!}+\frac{-(\hat{\mathbf{r}} \times) \theta^{3}}{3!}+\frac{-(\hat{\mathbf{r}} \times)^{2} \theta^{4}}{4!}+\cdots$ $e^{(\hat{\mathbf{r}} \times) \theta}=(\hat{\mathbf{r}} \times)\left(\frac{\theta}{1!}-\frac{\theta^{3}}{3!}+\cdots\right)+\mathbf{I}+(\hat{\mathbf{r}} \times)^{2}\left(+\frac{\theta^{2}}{2!}-\frac{\theta^{4}}{4!}+\cdots\right)$

$$
e^{(\hat{\mathbf{r}} \times) \theta}=(\hat{\mathbf{r}} \times) \sin (\theta)+\mathbf{I}+(\hat{\mathbf{r}} \times)^{2}(1-\cos (\theta))
$$

Thursday, November 12, 2009

Quaternions

- Uber-Complex Numbers

$$
\begin{aligned}
& \mathrm{q}=\left(z_{1}, z_{2}, z_{3}, s\right)=(\mathbf{z}, s) \\
& \mathrm{q}=i z_{1}+j z_{2}+k z_{3}+s
\end{aligned}
$$

$$
\begin{array}{lll}
i^{2}=j^{2}=k^{2}=-1 & \begin{array}{ll}
i j=k & j i=-k \\
j k=i & k j=-i \\
k i=j & i k=-j
\end{array}
\end{array}
$$

Thursday, November 12, 2009

Quaternions

- Multiplication natural consequence of defn.

$$
\mathrm{q} \cdot \mathrm{p}=\left(\mathbf{z}_{q} s_{p}+\mathbf{z}_{p} s_{q}+\mathbf{z}_{p} \times \mathbf{z}_{q}, s_{p} s_{q}-\mathbf{z}_{p} \cdot \mathbf{z}_{q}\right)
$$

- Conjugate

$$
\mathrm{q}^{*}=(-\mathbf{z}, s)
$$

- Magnitude

$$
\|\mathrm{q}\|^{2}=\mathbf{z} \cdot \mathbf{z}+s^{2}=\mathrm{q} \cdot \mathrm{q}^{*}
$$

Quaternions

- Vectors as quaternions

$$
v=(\mathbf{v}, 0)
$$

- Rotations as quaternions

$$
r=\left(\hat{\mathbf{r}} \sin \frac{\theta}{2}, \cos \frac{\theta}{2}\right)
$$

$$
x^{\prime}=r \cdot x \cdot r^{*}
$$

- Composing rotations

$$
r=r_{1} \cdot r_{2}<\text { Compare to Exp. Map }
$$

Thursday, November 12, 2009

Thursday, November 12, 2009

Rotation Matrices

- Eigen system

- One real eigenvalue
- Real axis is axis of rotation
- Imaginary values are 2D rotation as complex number
- Logarithmic formula

$$
\begin{gathered}
(\hat{\mathbf{r}} \times)=\ln (\mathbf{R})=\frac{\theta}{2 \sin \theta}\left(\mathbf{R}-\mathbf{R}^{\top}\right) \\
\theta=\cos ^{-1}\left(\frac{\operatorname{Tr}(\mathbf{R})-1}{2}\right)
\end{gathered}
$$

Similar formulae as for exponential..

Rotation Matrices

- Consider:

$$
\mathbf{R I}=\left[\begin{array}{lll}
r_{x x} & r_{x y} & r_{x z} \\
r_{y x} & r_{y y} & r_{y z} \\
r_{z x} & r_{z y} & r_{z z}
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- Columns are coordinate axes after transformation (true for general matrices)
- Rows are original axes in original system (not true for general matrices)

Thursday, November 12, 2009

	Forward Kinematics
- Articulated skeleton	
• Topology (what's connected to what)	
• Geometric relations from joints	
• Independent of display geometry	
- Tree structure	
• Loop joints break "tree-ness"	

Thursday, November 12, 2009

Thursday, November 12, 2009

Thursday, November 12, 2009

Forward Kinematics

- Pin Joints
- Translate inboard joint to local origin
- Apply rotation about axis
- Translate origin to location of joint on outboard body

Forward Kinematics

- Ball Joints
- Translate inboard joint to local origin
- Apply rotation about arbitrary axis
- Translate origin to location of joint on outboard body

Thursday, November 12, 2009

Forward Kinematics

- Prismatic Joints
- Translate inboard joint to local origin
- Translate along axis
- Translate origin to location of joint on outboard body

Forward Kinematics

- Composite transformations up the hierarchy

Thursday, November 12, 2009

Thursday, November 12, 2009

	Forward Kinematics
- Composite transformations up the hierarchy	

| Forward Kinematics |
| :--- | :--- |
| - Composite transformations up the hierarchy |

Thursday, November 12, 2009

Thursday, November 12, 2009

Inverse Kinematics

- Direct IK: solve for the parameters

Thursday, November 12, 2009

Thursday, November 12, 2009

	Inverse Kinematics
- Numerical Solution	
- Start in some initial configuration	
- Define an error metric (e.g. goal pos - current pos)	
- Compute Jacobian of error w.r.t. inputs	
- Apply Newton's method (or other procedure)	
- Iterate...	

Thursday, November 12, 2009

Thursday, November 12, 2009

Thursday, November 12, 2009

Inverse Kinematics
$J=\left[\begin{array}{cc}\frac{\partial p_{z}}{\partial \theta_{1}} \frac{\partial p_{z}}{\partial \theta_{2}} \\ \frac{\partial p_{x}}{\partial \theta_{1}} \frac{\partial p_{x}}{\partial \theta_{2}}\end{array}\right]$
$\frac{\partial \boldsymbol{p}}{\partial \theta_{*}}=J \cdot\left[\begin{array}{l}\frac{\partial \theta_{1}}{\partial \theta_{*}} \\ \frac{\partial \theta_{2}}{\partial \theta_{*}}\end{array}\right]=J \cdot\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]$

$\left.\begin{array}{|c|}\hline\end{array} \left\lvert\, \begin{array}{r}\text { Inverse Kinematics } \\ \boldsymbol{c}=\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right] \quad \mathrm{d} \boldsymbol{p}=\left[\begin{array}{l}\mathrm{d} p_{z} \\ \mathrm{~d} p_{x}\end{array}\right] \\ \mathrm{d} \boldsymbol{p}=J \cdot \boldsymbol{c} \\ \boldsymbol{c}=J^{-1} \cdot \mathrm{~d} \boldsymbol{p}\end{array}\right.\right]$

Thursday, November 12, 2009

Thursday, November 12, 2009

Thursday, November 12, 2009

Thursday, November 12, 2009

Inverse Kinematics

- Can't just concatenate individual matrices

Thursday, November 12, 2009

	Inverse Kinematics
Transformation from body to world $X_{0 \leftarrow i}=\prod_{j=1}^{i} X_{(j-1) \leftarrow j}=X_{0 \leftarrow 1} \cdot X_{1 \leftarrow 2} \cdots$ Rotation from body to world $R_{0 \leftarrow i}=\prod_{j=1}^{i} R_{(j-1) \leftarrow j}=R_{0 \leftarrow 1} \cdot R_{1 \leftarrow 2} \cdots$	

Thursday, November 12, 2009

Thursday, November 12, 2009

	Inverse Kinematics
- More complex systems	
- More complex joints (prism and ball)	
- More links	
- Other criteria (CoM or height)	
- Hard constraints (eg foot plants)	
- Unilateral constraints (eg joint limits)	
- Multiple criteria and multiple chains	
- Smoothness over time	
- DOF are determined by control points of a curve (chain rule)	

	Inverse Kinematics
	Some issues - How to pick from multiple solutions? - Robustness when no solutions - Contradictory solutions - Smooth interpolation • Interpolation aware of constraints

Thursday, November 12, 2009

Prior on "good" configurations Nㅔㄴ

Style-Based Inverse Kinematics
Grochow, Martin, Hertzmann, Popović

