@5 04018
Advanced Computer Graphics

Rotations and Inverse Kinematics

James F. O'Brien

Associate Professor
U.C. Berkeley

Rotations

* 3D Rotations fundamentally more complex than in 2D

» 2D: amount of rotation
» 3D: amount and axis of rotation

<> -Vs-

B EiD

Thursday, November 12, 2009

Rotations

* Rotations still orthonormal

. Det(R) =1 —1

* Preserve lengths and distance to origin
* 3D rotations DO NOT COMMUTE!

* Right-hand rle DO NOT COMMUTE!

+ Unique matrices %

Axis-aligned 3D Rotations

+ 2D rotations implicitly rotate about a third out of plane
axis

O %

Thursday, November 12, 2009

Axis-aligned 3D Rotations

+ 2D rotations implicitly rotate about a third out of plane
axis

_ [cos(8) —sin(6) - C(i)r?(a) —(S)in(e) 0
R_[sin(e) cos(e)} = [S 56) Cs(.)(e) (1)

S 3

Axis-aligned 3D Rotations

1 0 0
R.= |0 cos(B) —sin(6)

0 sin(6) cos(0)

cos(B) 0O sin(0) “
R=| 0 1 0

—sin(B) 0 cos(0)

[cos(0) —sin(0) 0
R.= |sin(6) cos(B) O
0 0 1

>

Thursday, November 12, 2009

Axis-aligned 3D Rotations

1 0 0
R = |0 cos(B) —sin(0)
0 sin(6) cos(0) o ,
5 = Zis inyollEide-.
[cos(B) 0 sin(0)] 9
R g 1 o0
—sin(0) 0 cos(0)

0 0

1 0 0
R.= |0 cos(B) —sin(6)
i sinl(d) Cos(e)- Also right handed “Zup”
[cos(B) 0 sin(0)] 5
R=| 0 1 0
| —sin(0) 0 cos(0)| 5

[cos(0) —sin(0) 0
R.= |sin(6) cos(B) O
0 0 I

>

Thursday, November 12, 2009

Axis-aligned 3D Rotations

» Also known as “‘direction-cosine’” matrices

I 0 0 cos(0) 0O sin(0)
R= !0 cos(0) —sin(e)] R= 0 1
0

sin(B) cos(0) —sin(0) 0 cos(0)

R.= [sin(B) cos(0)

0 0

cos(B) —sin(6) 0
0
1

Arbitrary Rotations

+ Can be built from axis-aligned matrices:

R=R: -R;-R;
* Result due to Euler... hence called

Euler Angles

* Easy to store in vector

* But NOT a vector.

R =rot(x,y,7)

Thursday, November 12, 2009

Arbitrary Rotations

R=R: R;-R;

Arbitrary Rotations

* Allows tumbling
* Euler angles are non-unique
+ Gimbal-lock

* Moving -vs- fixed axes

* Reverse of each other

Thursday, November 12, 2009

Exponential Maps

* Direct representation of arbitrary rotation
* AKA: axis-angle, angular displacement vector
« Rotate 0 degrees about some axis

« Encode 0 by length of vector
6 = |r|

—>

Exponential Maps

« Given vector T, how to get matrix R

* Method from text:

rotate about x axis to put r into the x-y plane
rotate about z axis align r with the x axis
rotate B degrees about x axis

undo #2 and then #1

composite together

Uk

Thursday, November 12, 2009

Exponential Maps

<

¢

* Vector expressing a point has two parts

Q XH does not change
0 rotates like a 2D point
X/ P

Exponential Maps

—X| =& X (F X x) X| X

X' = x| +xsin(0) +x cos(6)

X sin(0)

r
N\ 5 X, .
/. \'7\
/ X,
e
X =F XX

—x cos(0)

Thursday, November 12, 2009

Exponential Maps

* Rodriguez Formula

iy
X
. . e
Actually a minor variation

Exponential Maps

* Rodriguez Formula

XJ_
/ ~ '7\
X
\ . i
Actually a minor variation

Thursday, November 12, 2009

Exponential Maps

* Building the matrix

x' = ((#F") +sin(0) (Fx) — cos(8) (£ x) (Ex)) x

U 5
Ex)=|7 0 —#
2 B

Antisymmetric matrix
(ax)b=axb

Easy to verify by expansion

Exponential Maps

* Allows tumbling

* No gimbal-lock!

* Orientations are space within TT-radius ball
* Nearly unique representation

* Singularities on shells at 27T

* Nice for interpolation

Thursday, November 12, 2009

Exponential Maps

* Why exponential?

, : 7
* Recall series expansion of €

e

e’ = 1_|_£_|___|___|_...
e ol o

Exponential Maps

* Why exponential? o
* Recall series expansion of €
« Euler: what happens if you put in i@ for x

o, 0 -6 —ie° o
¢ = STRECTERNETRRE T

([(6 -0
= —|—2—!—|‘4—!+"' S F—l—?—l‘

= cos(0) +isin(0)

)

Thursday, November 12, 2009

Exponential Maps

* Why exponential?

o NoN2a2 (2130 (e

(X0 (Bx)e0 (BX)6T IR

S TR TR
But notice that: (£x)? = —(#x)

Ity 2 i 3! 4!

dB0 4 (tx)6 i (tx)20% —(¥x)6° N —(£x)%6* .

Exponential Maps

(£x)0 (Ex)%0* —(Fx)0® —(Bx)%0*
1! 2! 3! . 4!

. 0 o 82 Gl
Zoo (£x) (___+...) + 1+ (#x)? <+____|_..

i 20

el — (#x)5in(0) +I+ (#x)%(1 — cos(0))

)

Thursday, November 12, 2009

Quaternions

* More popular than exponential maps
+ Natural extension of €® = cos(8) + isin(0)
* Due to Hamilton (1843)

* Interesting history
+ Involves “hermaphroditic monsters”

Quaternions

* Uber-Complex Numbers

G = (Z17Z27Z37S) = (Z,S)
a=Iiz1+ jzo+kzz+s

ij=k ji=—k
k1 jk =i sy —y
ki—j ik

Thursday, November 12, 2009

Quaternions

+ Multiplication natural consequence of defn.
+ Conjugate
Q" = (—Z,S)

* Magnitude

o =2-2+5*=q-q"

Quaternions

* Vectors as quaternions

v — (V,O)
* Rotations as quaternions
0 0

r= (Fsin—,cos 5)
* Rotating a vector

o *
e B G

* Composing rotations

r=—ry-r) <= Compareto Exp. Map

Thursday, November 12, 2009

Quaternions

* No tumbling
* No gimbal-lock

* Nice for interpolation

* Orientations are “double unique”
* Surface of a 3-sphere in 4D ||F|| — |

Interpolation

Thursday, November 12, 2009

Rotation Matrices

* Eigen system

+ One real eigenvalue
» Real axis is axis of rotation

* Imaginary values are 2D rotation as complex number

* Logarithmic formula

0

(f'x):ln(R)zzsme(R—RT)
L (Te(R) -1
0 = cos (T)

Rotation Matrices

* Consider:
Zo waniimaile 0.
RUE=4~ ~, r ||0 1"
gy [0 OR

+ Columns are coordinate axes after transformation (true
for general matrices)

* Rows are original axes in original system (not true for
general matrices)

Thursday, November 12, 2009

Similar formulae as for exponential... .

Forward Kinematics

* Articulated skeleton

+ Topology (what's connected to what)
+ Geometric relations from joints

+ Independent of display geometry

* Tree structure

* Loop joints break “tree-ness”

Forward Kinematics

* Root body

» Position set by ““global” transformation
+ Root joint

+ Position

» Rotation
+ Other bodies relative to root
* Inboard toward the root

* Outboard away from root

Thursday, November 12, 2009

Forward Kinematics

* A joint

* Joint's inboard body

\

* Joint's outboard body

Forward Kinematics

* A body

+ Body's inboard joint \
+ Body's outboard joint

+ May have several outboard joints

Thursday, November 12, 2009

Forward Kinematics

* A body
+ Body's inboard joint

* Body's outboard joint
* May have several outboard joints

+ Body's parent

+ Body's child

+ May have several children

Forward Kinematics

* Interior joints

+ Typically not 6 DOF joints
+ Pin - rotate about one axis
+ Ball - arbitrary rotation

* Prism - translation along one axis

Thursday, November 12, 2009

Forward Kinematics

* Pin Joints

+ Translate inboard joint to local origin
+ Apply rotation about axis

+ Translate origin to location of joint on outboard body

Forward Kinematics

* Ball Joints

+ Translate inboard joint to local origin
+ Apply rotation about arbitrary axis

+ Translate origin to location of joint on outboard body

x
-

Thursday, November 12, 2009

Forward Kinematics

* Prismatic Joints

+ Translate inboard joint to local origin

+ Translate along axis

+ Translate origin to location of joint on outboard body

Forward Kinematics

+ Composite transformations up the hierarchy

I —
v &

Thursday, November 12, 2009

Forward Kinematics

+ Composite transformations up the hierarchy

A %&
Y

Forward Kinematics

+ Composite transformations up the hierarchy

A

o

Thursday, November 12, 2009

Forward Kinematics

+ Composite transformations up the hierarchy

Forward Kinematics

+ Composite transformations up the hierarchy

Thursday, November 12, 2009

Inverse Kinematics

+ Initial configuration
+ Desired end point location

* Find

* Interior parameter settings

» Given
» Root transformation ¥

Inverse Kinematics

W

Egon Pasztor

Thursday, November 12, 2009

Inverse Kinematics

* A simple two segment arm in 2D

pz = lycos(01) + locos(01 + 605)

pr = l1sin(01) + losin(6q + 69)

Warning: Z-up Coordinate System

Inverse Kinematics

* Direct IK: solve for the parameters

2 2 2 2
_ - Py — Zl — 12
9 _ 1 pz X
h = cos T
6 — —pzlosin(02) + py(l1 + lo cos(0))

palosin(@s) + pz (11 + lo cos(6))

Thursday, November 12, 2009

Inverse Kinematics

* Why is the problem hard?

+ Muttiple solutions separated in configuration space

Inverse Kinematics

* Why is the problem hard?

+ Multiple solutions connected in configuration space

Thursday, November 12, 2009

Inverse Kinematics

* Why is the problem hard?

+ Solutions may not always exist

7=
1

Inverse Kinematics

* Numerical Solution

« Start in some initial configuration

+ Define an error metric (e.g. goal pos - current pos)
+ Compute Jacobian of error wi.rt. inputs

+ Apply Newton’s method (or other procedure)

* lterate...

Thursday, November 12, 2009

Inverse Kinematics

* Recall simple two segment arm:

lInverse Kinematics

* We can write of the derivatives

Thursday, November 12, 2009

r Inverse Kinematics

Inverse Kinematics

Thursday, November 12, 2009

|Inverse Kinematics

lInverse Kinematics

Thursday, November 12, 2009

Inverse Kinematics

Solving for ¢1 and ¢

= J_l-dp

Is the Jacobian m

Inverse Kinematics

* Problems

» Jacobian may (willl) not always be invertible
+ Use pseudo inverse (SVD)
+ Robust iterative method

* Jacobian is not constant

5
R
D

+ Nonlinear ly) well behaved

ST NN
I

<
o
<>
S~—

H%a: =
[\

Thursday, November 12, 2009

Inverse Kinematics

lInverse Kinematics

Thursday, November 12, 2009

|Inverse Kinematics

lInverse Kinematics

Thursday, November 12, 2009

Inverse Kinematics

* Many links / joints

» Need a generic method for building Jacobian

2a 2b

Inverse Kinematics

+ Can't just concatenate individual matrices

j: J; 2b J2a
d3
2 d = de
) d2a
din,
5 -
dp # J - dd

Thursday, November 12, 2009

Inverse Kinematics

Transformation from body to world

i
Xoe—i = IL X

‘]_1)<_] = XO(_l.X1<_2 o .

Rotation from body to world

7

Inverse Kinematics

Need to transform Jacobians to common
coordinate system (WORLD)

2a 2b

»

2b

Ji WORLD = By (i—1) - Ji

Thursday, November 12, 2009

Inverse Kinematics

— T
Ryan J3(03,p3)
7 _ | Focaa Jon(0ap, Xop3 - P3)
Rye1- J2a(02a7 Xoac3 - p3)
J1(01, X13 - p3)
r Note: Each row in the above
d 3 should be transposed....
d = de
dog dp=J-dd
iy

A Cheap Alternative

* Estimate Jacobian (or parts of it) using finite differences

* Cyclic Coordinate Descent

+ Solve for each DOF one at a time

* Iterate till good enough / run out of time

Thursday, November 12, 2009

Inverse Kinematics

* More complex systems

+ More complex joints (prism and ball)
* More links

+ Other criteria (COM or height)

+ Hard constraints (eg foot plants)

+ Unilateral constraints (eg joint limits)
+ Multiple criteria and multiple chains

* Smoothness over time

+ DOF are determined by control points of a curve (chain rule)

Inverse Kinematics

* Some issues

+ How to pick from multiple solutions?
* Robustness when no solutions

+ Contradictory solutions

+ Smooth interpolation

+ Interpolation aware of constraints

Thursday, November 12, 2009

Prior on “good” configurations

Style-Based Inverse Kinematics
Grochow, Martin, Hertzmann, Popovic

Thursday, November 12, 2009

