

Highlights

- Clipped pixels (value >255)
- Pro and semi-pro digital cameras allow you to make them blink.

Calibrating the response curve

 Vary scene luminance and see pixel values · Assumes we control and know scene luminance - Vary exposure and see pixel value for one scene

• But note that we can usually not vary exposure more finely

· Two basic solutions

luminance

- Vary exposure

· Best of both:

than by 1/3 stop

- Exploit the large number of pixels

The Math • Let g(z) be the discrete inverse response function • For each pixel site i in each image j, want: $\log Radiance_i + \log \Delta t_j = g(Z_{ij})$ • Solve the overdetermined linear system: $\sum_{i=1}^{N} \sum_{j=1}^{P} \left[\log Radiance_i + \log \Delta t_j - g(Z_{ij}) \right] + \lambda \sum_{z=Z_{min}}^{Z_{max}} g''(z)^2$ fitting term Slide stolen from Alyosha Efros who stole is from Paul Debevee

```
function [g,1E]=gsolve(2,B,1,w)
n = 256;
A = zeros(sire(Z,1)*sire(Z,2)*n+1,n*sire(Z,1));
b = zeros(sire(A,1),1);
k = 1;
for i=1:sire(Z,1)
for j=1:sire(Z,2)
wi] = w(Z(i,j)+1);
A(z,Z(i,j)+1) = wij; A(k,n+i) = -wij; b(k,1) = wij * B(i,j);
k=k+1;
end
A(E,129) = 1;
k=k+1;
for i=1:n-2
## Include the smoothness equations
A(E,129) = 1;
k=k+1;
for i=1:n-2
## Include the smoothness equations
A(E,1)=1*w(i+1); A(E,i+1)=-2*1*w(i+1); A(E,1+2)=1*w(i+1);
k=k+1;
end
x = A(E,1)=1*w(i+1); A(E,i+1)=-2*1*w(i+1); A(E,1+2)=1*w(i+1);
k=k+1;
end
x = A(E,1)=1*w(i+1); A(E,1+1)=-2*1*w(i+1);
k=k+1;
end
x = A(E,1)=1*w(i+1); A(E,1+1)=-2*1*w(i+1);
k=k+1;
end
x = A(E,1)=1*w(i+1); A(E,1+1)=-2*1*w(i+1);
A(E,1+1)=1*w(i+1);
A(E,1+1)=1*w(i
```


HDR combination papers

- Steve Mann http://genesis.eecg.toronto.edu/wyckoff/ index.html
- Paul Debevec http://www.debevec.org/Research/ HDR/
- Mitsunaga, Nayar, Grossberg http:// www1.cs.columbia.edu/CAVE/projects/rad_cal/ rad_cal.php

Smarter HDR capture

Ward, Journal of Graphics Tools, 2003

http://www.anyhere.com/gward/papers/jgtpap2.pdf

- $\boldsymbol{Implemented \ in \ Photosphere} \ \underline{{}_{\underline{http://www.anyhere.com/}}}$
- Image registration (no need for tripod)
- · Lens flare removal
- · Ghost removal

Images Greg War

Image registration

- How to robustly compare images of different exposure?
- Use a black and white version of the image thresholded at the median
 - Median-Threshold Bitmap (MTB)
- Find the translation that minimizes difference
- · Accelerate using pyramid

Extension: HDR video • Kang et al. Siggraph 2003 http://portal.acm.org/citation.cfm?id=882262.882270

HDR encoding

- · Most formats are lossless
- Adobe DNG (digital negative)
 Specific for RAW files, avoid proprietary formats
- RGBE
 - 24 bits/pixels as usual, plus 8 bit of common exponent
 - Introduced by Greg Ward for Radiance (light simulation)
- Enormous dynamic range
- OpenEXR
- By Industrial Light + Magic, also standard in graphics hardware
- Hobit per channel (48 bits per pixel) 10 mantissa, sign, 5 exponent
 Fine quantization (because 10 bit mantissa), only 9.6 orders of magnitude
- - Has a 16 bit mode, lossy

HDR formats

- Summary of all HDR encoding formats (Greg Ward): http://www.anyhere.com/gward/hdrenc/ hdr encodings.html
- · Greg's notes: http://www.anyhere.com/gward/pickup/ CIC13course.pdf
- http://www.openexr.com/
- High Dynamic Range Video Encoding (MPI) http://www.mpi-sb.mpg.de/resources/hdrvideo/

HDR code

- HDRShop http://gl.ict.usc.edu/HDRShop/ (v1 is free)
 Columbia's camera calibration and HDR combination with source code Mitsunaga, Nayar,
 Grossberg http://www.Los.columbia.edu/CAV/E/projects/rad_cal/rad_cal.php
 Greg Ward Phososphere HDR browser and image combination with regsitration (Macintosh, command-line version under Linux) with source code http://www.anyhere.com/
 Photoshop CS2

- Photoshop CS2

 Idruna http://www.idruna.com/photogenicshdr.html
 MPI PFScalibration (includes source code)
 http://www.mpi.mpg.de/resources/hdr/calibration/pfs.html
 EXR tools http://scanlinc.ede/crtosls/
 HDR Image Editor http://www.icnpaint.org/
 CinePaint http://www.icnpaint.org/
 Photomatix http://www.icnpaint.org/
 Photomatix http://www.icnpaint.org/
 Photomatix http://www.icnpaint.org/

- EasyHDR http://www.astro.leszno.net/easyHDR.php
- ${\bf Artizen\ HDR\ \underline{http://www.supportingcomputers.net/Applications/Artizen/Artizen.htm}}$
- Automated High Dynamic Range Imaging
 Software & Images http://www2.cs.uh.edu/~somalley/hdri images.html
 Optipix http://www.imaging-resource.com/SOFT/OPT/OPT.HTM

HDR images

- $\underline{http://www.debevec.org/Research/HDR/}$
- $\underline{http://www.mpi\text{-}sb.mpg.de/resources/hdr/gallery.html}$
- http://people.csail.mit.edu/fredo/PUBLI/Siggraph2002/
- http://www.openexr.com/samples.html
- http://www.flickr.com/groups/hdr/
- http://www2.cs.uh.edu/~somalley/hdri_images.html#hdr_others
- http://www.anyhere.com/gward/hdrenc/pages/originals.html
- http://www.cis.rit.edu/mcsl/icam/hdr/rit_hdr/
- $\underline{http://www.cs.utah.edu/\%7Ereinhard/cdrom/hdr.html}$
- http://www.sachform.de/download EN.html
- http://lcavwww.epfl.ch/%7Elmevlan/HdrImages/February06/ February06.html
- $\underline{http://lcavwww.epfl.ch/\%7Elmeylan/HdrImages/April04/april04.html}$
- $\underline{http://books.elsevier.com/companions/0125852630/hdri/html/images.html}$

HDR Cameras

- · HDR sensors using CMOS
 - Use a log response curve
 - e.g. SMaL,

Nayar et al.

- Filter

- Integration time

· Other computational photography tricks

HDR cameras

- http://www.hdrc.com/home.htm
- http://www.smalcamera.com/technology.html
- http://www.cfar.umd.edu/~aagrawal/gradcam/gradcam.html
- http://www.spheron.com/spheron/public/en/home/home.php
- http://www.ims-chips.com/home.php3?id=e0841
- $\underline{http://www.thomsongrassvalley.com/products/cameras/viper/}$
- http://www.pixim.com/
- http://www.ptgrey.com/
- http://www.siliconimaging.com/
- $\underline{http://www-mtl.mit.edu/researchgroups/sodini/PABLOACO.pdf}$
- http://www1.cs.columbia.edu/CAVE/projects/adr_lcd/adr_lcd.php http://www1.cs.columbia.edu/CAVE/projects/gen_mos/gen_mos.php
- http://www1.cs.columbia.edu/CAVE/projects/pi micro/pi micro.php
- http://www.cs.cmu.edu/afs/cs/usr/brajovic/www/labweb/index.html

The second half: contrast reduction

- Input: high-dynamic-range image
 - (floating point

per pixel)

Naïve technique

- Scene has 1:10,000 contrast, display has 1:100
- Simplest contrast reduction?

Durand & Dorsey 02

• Tomasi and Manduci 1998 http://www.cse.ucsc.edu/~manduchi/Papers/ ICCV98.pdf • Related to

- SUSAN filter [Smith and Brady 95]
 http://citeseer.ist.psu.edu/smith95susan.html

 Digital-TV [Chan, Osher and Chen 2001]
- Digital-TV [Chan, Osher and Chen 2001]
 http://citeseer.ist.psu.edu/chan01digital.html
- sigma filter http://www.geogr.ku.dk/CHIPS/Manual/f187.htm

Acceleration

- Linear for a given value of I(x)
- · Convolution of gI by Gaussian f

$$J(x) = \frac{1}{k(x)} \sum_{\xi} f(x,\xi) \qquad g(I(\xi) - I(x)) \qquad I(\xi)$$

Acceleration • Linear for a given value of I(x) · Convolution of g I by Gaussian f • Valid for all x with same value I(x) $J(x) = \frac{1}{k(x)} \sum_{\xi} f(x,\xi) \qquad g(I(\xi) - I(x))$

Acceleration

- Discretize the set of possible I(x)
- · Perform linear Gaussian blur (FFT)
- · Linear interpolation in between

Acceleration

- Discretize the set of possible I(x)
- Perform linear Gaussian blur (FFT)
- · Linear interpolation in between

More acceleration

- Discretize the set of possible I(x)
- · Perform linear Gaussian blur (FFT)
- · Linear interpolation in between

• Subsample in space
$$J(x) = \frac{1}{k(x)} \sum_{\xi} f(x,\xi) \qquad g(I(\xi) - I(x)) \qquad I(\xi)$$

• k(x) treated similarly

Handling uncertainty

- Sometimes, not enough "similar" pixels
- · Happens for specular highlights
- Can be detected using normalization k(x)
- Simple fix (average with output of neighbors)

Weights with high uncertainty

Uncertainty

Reduction

- · To reduce contrast of base layer
 - scale in the log domain
 - → W exponent in linear space
- Set a target range: log₁₀ (5)
- Compute range in the base (log) layer: (max-min)
- Deduce **▼** using an elaborate operation known as
- · You finally need to normalize so that the biggest value in the (linear) base is 1 (0 in log):
 - Offset the compressed based by its max

Live demo

• Xx GHz Pentium Whatever PC

Cleaner version of the acceleration

- Paris & Durand, ECCV 06 http://people.csail.mit.edu/sparis/#publications
- · Signal processing foundation
- · Better accuracy

Tone mapping evaluation

- · Recent work has performed user experiments to evaluate competing tone mapping operators
 - Ledda et al. 2005 http://www.cs.bris.ac.uk/ Publications/Papers/2000255.pdf
 - Kuang et al. 2004 ild/PDFs/PRO22.pdf
- · Interestingly, the former concludes my method is the worst, the latter that my method is the best!
 - They choose to test a different criterion: fidelity vs. preference
- · More importantly, they focus on algorithm and ignore parameters

	Ist	2nd	3rd	4th	5th	6th
Scene I	-	- 11	A	11	f	L
Scene 2	1	P.	H	A	18	L
Scene 3	11.	T	A	11	L.	- 11
Scene 4	7	. L.	- 3	A	H	/t
Scene 5	1	H	A	P	L	H
Scene 6	.1.	H	A	11	· L	.0
Scene 7	1	A	- 4"	11	0	L
Scene 8	1	P		H	L.	11.
Scene 9	175	A	L	H	100	1

Adapted from Ledda et al.

Other tone mapping references

- J. DiCarlo and B. Wandell, Rendering High Dynamic Range Images http://www.isl.stanford.edu/%7Eabbas/group/papers and pub/spie00 jeff.pdf
- Choudhury, P., Tumblin, J., "
 The Trilateral Filter for High Contrast Images and Meshes". http://www.cs.northwestern.edu/-jet/publications.html
- WWW.S.BOFUNENER.EU. TECHNOLOGY
 TUMBlin, J., Turk, G., "

 Low Curvature Image Simplifiers (LCIS): A Boundary Hierarchy for Detail-Preserving Contrast Reduction."

 Intro//www.s.aorthwester.edu/-[eftpublications.htm]
- Tumblin, J.,
 "Three Methods For Detail-Preserving Contrast Reduction For Displayed
 Images" http://www.cs.northwestern.edu/~jet/publications.html
- Photographic Tone Reproduction for Digital Images Erik Reinhard, Mike Stark, Peter Shirley and Jim Ferwerda
- Ashikhmin, M. ``A Tone Mapping Algorithm for High Contrast Images'' http://www.cs.sunvsb.edu/~ash/m.pdf
- Retinex at Nasa http://dragon.larc.nasa
- Gradient Domain High Dynamic Range Compression Raanan Fattal, Dani Lischinski, Michael Werman http://www.cs.huji.ac.il/-danix/hdr/
 Li et al.: Wavelets and activity maps http://www.int.edu/yzi/www/hdr_companding.htm

Tone mapping code

- http://www.mpi-sb.mpg.de/resources/pfstools/
- http://scanline.ca/exrtools/
- $\bullet \ \underline{http://www.cs.utah.edu/\sim\!reinhard/cdrom/source.html}\\$
- http://www.cis.rit.edu/mcsl/icam/hdr/

