#### Image Processing Techniques and Smart Image Manipulation

Maneesh Agrawala

#### Topics

Texture Synthesis High Dynamic Range Imaging Bilateral Filter Gradient-Domain Techniques Matting Graph-Cut Optimization Least-Squares Optimization Color ...





#### Weather Forecasting for Dummies™

#### Let's predict weather:

- Given today's weather only, we want to know tomorrow's
- Suppose weather can only be {Sunny, Cloudy, Raining}

### The "Weather Channel" algorithm:

- Over a long period of time, record:
  - How often S followed by R
  - How often S followed by S
     Etc.
- Compute percentages for each state:
- P(R|S), P(S|S), etc.
- Predict the state with highest probability!
- It's a Markov Chain
  - . . . . . .



#### **Text Synthesis**

[Shannon,'48] proposed a way to generate English-looking text using N-grams:

- Assume a generalized Markov model
- Use a large text to compute prob. distributions of each letter given N-1 previous letters
- Starting from a seed repeatedly sample this Markov chain to generate new letters
- · Also works for whole words

## WE NEED TO EAT CAKE

#### Mark V. Shaney (Bell Labs)

Results (using alt.singles corpus):

- "As I've commented before, really relating to someone involves standing next to impossible."
- "One morning I shot<sup>№</sup>an elephant in my arms and kissed him."
- "I spent an interesting evening recently with a grain of salt"































## Future cost

- Propagate future transition costs backward
- Iteratively compute new cost



### Future cost

- Propagate future transition costs backward
- Iteratively compute new cost



## Future cost

- Propagate future transition costs backward
- Iteratively compute new cost



## Future cost

- Propagate future transition costs backward
- Iteratively compute new cost



### **Future cost**

- Propagate future transition costs backward
- Iteratively compute new cost
  - $F_{i[\underline{w}]j} = C_{i[\underline{w}]j} + [\underline{w}] \min_{k} F_{j[\underline{w}]k}$
- Q-learning





## Video portrait



Useful for web pages

### **Region-based analysis**

• Divide video up into regions



Generate a video texture for each region



## User-controlled video textures





User selects target frame range

fast

User selects target frame fair

-----

## Video-based animation

- Like sprites computer games
- Extract sprites from real video
- Interactively control desired motion





## Video sprite control

• Augmented transition cost:

 $C_{i \rightarrow j}^{\text{Animation}} = \alpha C_{j \rightarrow j} + \beta \text{ angle } \bigcirc$ velocity vector Similarity term Control term

## Video sprite control

- Need future cost computation
- Precompute future costs for a few angles.

sw

- Switch between precomputed angles according to user input ,• Goal F,<sup>NW</sup> F,
- [GIT-GVU-00-11]



## Summary

- Video clips X video textures
  - define Markov process
  - preserve dynamics
  - avoid dead-ends
  - disguise visual discontinuities







Michel Gondry train video

http://youtube.com/watch?v=qUEs1BwVXGA

## Texture

- Texture depicts spatially repeating patterns
- Many natural phenomena are textures







radishes



# **Texture Synthesis**

- Goal of Texture Synthesis: create new samples of a given texture
- Many applications: virtual environments, hole-• filling, texturing surfaces

![](_page_7_Picture_15.jpeg)

![](_page_7_Picture_16.jpeg)

## The Challenge

• Need to model the whole spectrum: from repeated to stochastic texture

![](_page_7_Picture_19.jpeg)

## Heeger Bergen 1995

- Seminal paper that introduced texture synthesis to the graphics community
- Algorithm:
  - Initialize J to noise
  - Create multiresolution pyramids for I and J
  - Match the histograms of J's pyramid levels with I's pyramid levels
  - Loop until convergence

  - Can be generalized to 3D

## Heeger Bergen 1995 - Algorithm

![](_page_8_Figure_1.jpeg)

#### Image pyramids – Gaussian – Laplacian Steerable pyramids [SimoncelliFreeman95] – b): multiple scales of oriented filters – c): a sample image

 d): results of filters in b) applied to c)

![](_page_8_Figure_4.jpeg)

![](_page_8_Picture_5.jpeg)

## Heeger Bergen 1995 - Verdict

- Texture model: – Histograms of responses to various filters
- Avoiding copying:
   Inherent in algorithm
- No user intervention required
- Captures stochastic textures well
- Does not capture structure
  - Lack of inter-scale constraints

## De Bonet 1997

- Propagate constraints downwards by matching statistics all the way up the pyramid
- *Feature vector:* multiscale collection of filter responses for a given pixel
- Algorithm:
  - Initialize J to empty image
  - Create multiresolution pyramids for I and J
  - For each pixel in level of *J*, randomly choose pixel from corresponding level of *I* that has <u>similar</u> feature vector

![](_page_8_Figure_20.jpeg)

![](_page_8_Figure_21.jpeg)

- 6 feature vectors shown
  - Notice how they share parent information

![](_page_9_Picture_0.jpeg)

## De Bonet 1997 - Verdict

- Texture model:
  - Feature vector containing multiscale responses to various filters
- Avoiding copying:
  - Random choice of pixels with 'close' feature vectors, but copying still frequent on small scale
- Individual per-filter thresholds are cumbersome
- Feature vectors used in later synthesis work

![](_page_9_Figure_8.jpeg)

- Assuming Markov property, compute  $P(\mathbf{p}|N(\mathbf{p}))$ 
  - Building explicit probability tables infeasible
  - Instead, we search the input image for all similar neighborhoods — that's our pdf for p
  - To sample from this pdf, just pick one match at random

## Some Details

- Growing is in "onion skin" order
  - Within each "layer", pixels with most neighbors are synthesized first
  - If no close match can be found, the pixel is not synthesized until the end
- Using Gaussian-weighted SSD is very important
  - to make sure the new pixel agrees with its closest neighbors
  - Approximates reduction to a smaller neighborhood window if data is too sparse

![](_page_9_Figure_20.jpeg)

![](_page_9_Figure_21.jpeg)

![](_page_10_Figure_0.jpeg)

![](_page_10_Figure_1.jpeg)

![](_page_10_Figure_2.jpeg)

| Hole Filling |  |  |  |  |
|--------------|--|--|--|--|
|              |  |  |  |  |
|              |  |  |  |  |

![](_page_10_Picture_4.jpeg)

## Efros Leung 1999 - Verdict

- Texture model: – MRF
- Avoiding copying: – MRF
- Neighborhood size = largest feature size
- Markov model is surprisingly good
- "I spent an interesting evening recently with a grain of salt."
- Search is very slow with large neighborhoods

![](_page_11_Figure_0.jpeg)

- Exactly the same but now we want P(B|N(B))
- Much faster: synthesize all pixels in a block at once
- Not the same as multi-scale!

![](_page_11_Figure_5.jpeg)

![](_page_11_Figure_6.jpeg)

## **Our Philosophy**

- The "Corrupt Professor's Algorithm":
  - Plagiarize as much of the source image as you can
  - Then try to cover up the evidence
- Rationale:
  - Texture blocks are by definition correct samples of texture so problem only connecting them together

![](_page_11_Picture_13.jpeg)

![](_page_11_Figure_14.jpeg)

![](_page_12_Picture_0.jpeg)

| 10000                                   |  |
|-----------------------------------------|--|
|                                         |  |
|                                         |  |
| 000000000000                            |  |
| ologologologologologologologologologolo |  |
| cococcocco                              |  |
|                                         |  |
|                                         |  |

![](_page_12_Picture_2.jpeg)

![](_page_12_Picture_3.jpeg)

![](_page_12_Picture_4.jpeg)

![](_page_12_Picture_5.jpeg)

|             | Portilla & Simoncelli                    | Xu, Guo & Shum |
|-------------|------------------------------------------|----------------|
| input image | 대 [] [] [] [] [] [] [] [] [] [] [] [] [] |                |
|             | Wei & Levoy                              | Our algorithm  |

| especially if such a framework has the<br>it helps us to understand the functio<br>leeper way. Whereas no generic mo-<br>ussian: (DOG), difference of offset C<br>reative of a Gaussian, higher derivati<br>function, and so on-can be espect-<br>imple-cell receptive field, we nonsth<br>input image | Tortune a single of the second | Act, GUD G<br>sition—is perk a singl<br>of that neuribe the v<br>and and matheurophy<br>simple-cell recially if<br>y <sup>1-3</sup> and inferibs us v<br>nework has perhay.<br>and the fumeuroaDG<br>s no generic a single.<br>rence of offse the we<br>, higher derisecribing<br>-can be expess a fun-<br>helps us to understat<br>per way. Whereas a<br>tians (DOG), differen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| and<br>id<br>id<br>id<br>id<br>id<br>id<br>id<br>id<br>id<br>i                                                                                                                                                                                                                                         | All this important provides the second seco  | de and mittliem the<br>stagle-cell received<br>fund and inforced the<br>generation of the stage<br>and the stage of the<br>mespecially if and the<br>delegation of the<br>gestion of the stage<br>the stage of the stage of the stage<br>the stage of the stage of the stage<br>the stage of the |

## Efros Freeman 2001 - Verdict

- Texture model: – MRF
- Avoiding copying:
- Randomized patch selection, but still noticeable
- Patch size is a hard parameter to understand
- Results are surprisingly good given algorithm
- Multiscale goes on a brief hiatus

## Kwatra et. al. 2003

- Generalizes seam computation in overlap regions as a graph cut problem
  - Based on [Boykov et. al. 99] (with Ramin Zabih)
- Algorithm:
  - Initialize J to empty
  - Copy pieces of I to J using a variety of <u>methods</u>
  - Formulate graph in overlap region based on <u>error (differences)</u> and compute minimum cut
     Copy sink-side pixels to J
  - Variety of strategies to further hide seams

![](_page_13_Picture_17.jpeg)

![](_page_13_Picture_18.jpeg)

## Kwatra et. al. 2003 - Verdict

- Texture model: – MRF
- Avoiding copying:

   Even with a multitude of patch selection methods, still noticeable when it happens repeatedly
- Paper presents a bag of synthesis tricks without much intuition for when to use what
- Graph cut formalization is useful and powerful

## Fill Order

![](_page_14_Picture_6.jpeg)

• In what order should we fill the pixels?

![](_page_14_Picture_8.jpeg)

![](_page_14_Picture_9.jpeg)

![](_page_14_Picture_10.jpeg)

![](_page_14_Picture_11.jpeg)

## **Texture Transfer**

• Take the texture from one image and "paint" it onto another object

![](_page_15_Picture_2.jpeg)

![](_page_15_Picture_3.jpeg)

Same as texture synthesis, except an additional constraint:

- Consistency of texture
   Similarity to the image being "explained"

![](_page_15_Picture_7.jpeg)

![](_page_15_Picture_8.jpeg)

## Image Analogies

Aaron Hertzmann<sup>1,2</sup> Chuck Jacobs<sup>2</sup> Nuria Oliver<sup>2</sup> Brian Curless<sup>3</sup> David Salesin<sup>2,3</sup>

<sup>1</sup>New York University <sup>2</sup>Microsoft Research <sup>3</sup>University of Washington

![](_page_15_Picture_12.jpeg)

![](_page_15_Picture_13.jpeg)

![](_page_16_Picture_0.jpeg)

![](_page_16_Picture_1.jpeg)

![](_page_16_Picture_2.jpeg)

![](_page_16_Picture_3.jpeg)

![](_page_16_Picture_4.jpeg)

![](_page_16_Picture_5.jpeg)

![](_page_17_Picture_0.jpeg)