Advanced Computer Graphics (Fall 2009)

CS 294, Rendering Lecture 11 Representations of Visual Appearance Ravi Ramamoorthi

http://inst.eecs.berkeley.edu/~cs294-13/fa09

Motivation

- Have reached the limit of simple parametric reflectance (or animation, geometric models)
- Input appearance models, not Algorithms for rendering are limiting factor in realism
- Improvements require data-driven models

Motivation

- Have reached the limit of simple parametric reflectance (or animation, geometric models)
- Input appearance models, not Algorithms for rendering are limiting factor in realism
- Improvements require data-driven models
- Measure real-world visual appearance and represent
 - What types of datasets to measure or acquire?
 - What mathematical representations to use?

General Problem Characterization

- 6D Spatially-Varying Reflectance (SVBRDF)
- Lighting direction (2D)
- Viewing direction (2D)
- Spatial location (2D)
- With ~ 100 samples per dimension
 - ~ 10¹² samples total!!
 - Intractable representation, rendering
- Need usable compact representations that enable
 - Interactive renderingGlobal illumination (offline) rendering
 - Editing

The Challenge

6D Spatially-Varying Reflectance (SVBRDF)

- Lighting direction (2D)
- Viewing direction (2D)
- Spatial location (2D)
- With ~ 100 samples per dimension
 - ~ 10¹² samples total!!
 - Intractable representation, rendering

Other functions can be even higher dimensional

Mathematical Representations

How to address the curse of dimensionality, complexity?

- Low-frequency spherical harmonic descriptions
- Factorization into lower-dimensional components
- Sparse wavelet representations
- Nonlinear factorizations and machine learning
- Clustered low-dimensional subspaces
- Radial basis function approximations
 First order or gradient analysis
- And many more...

Contribution #1: Represent high-dimensional measured function as tree-structured collection of simple parts.

Historical Overview

- 1980-95: Focus on parametric reflectance models, fast offline finite element and Monte Carlo rendering algorithms
- Circa 1995: Focus shifts to input appearance models.
 Measured BRDFs and image-based rendering prominent
- 1998- : Strong interest in data-driven appearance. But these are gigantic datasets. Focus: efficiently represent
- 2002- : Relevant even for purely synthetic real-time rendering: Precompute data-driven models, represent efficiently
- Great deal of current work on acquiring and representing realistic lighting, materials...

Terment scattering function - 14
(μ/μ + μ/μ + μ/μ

General Plenoptic Function

- All knowledge of light in scene [Adelson 91]
- Anywhere in space (x, y, z)
- In any direction (θ, ϕ)
- At any time instant
- For any wavelength of light (λ)
- Function of 7 variables, therefore 7D function
- We care about taxonomy of scattering functions
 General Scattering Function is 14D (bet. two plenoptics) f(x_i, y_i, z_i, θ_i, φ_i, λ_i, t_i; x_o, y_o, z_o, θ_o, φ_o, λ_o, t_o)

Common Assumptions

- Ignore time dependence (no phosphorescence or time-varying BRDF properties [but see my work on T(S)VBRDFs])
- Ignore wavelength (no fluorescence, assume RGB)
- Travel in free space, parameterize on surfaces (no z)
 Alternative for light fields: 4D space of rays (intersections in 2 planes)
- Each of these removes 1D of plenoptic, 2D of scattering
- Left with 8D function of greatest importance for class
- 8D Bi-Directional Surface Scattering Distribution Function (BSSRDF) $f(x_i, y_i, \theta_i, \phi_i; x_o, y_o, \theta_o, \phi_o)$

Taxonomy of 8D Scattering Function

 $f(\vec{x}_i, \vec{\omega}_i; \vec{x}_o, \vec{\omega}_o)$

- Function of two spatial positions, two spherical angles (4 total)
- Can consider any subsets of 1-4 of these
 Slices of the full 8D BSSRDF
- Number of possible slices is 4+6+4+1 = 15.
 Not all make sense, but most do and have begun to be studied
- Unified framework not readily known, presented in lecture

Taxonomy of 8D Scattering Function 1

$f(\vec{x}_i, \vec{\omega}_i ; \vec{x}_o, \vec{\omega}_o)$

- Function of two spatial positions, two spherical angles (4 total)
- Can consider any subsets of 1-4 of these
 Slices of the full 8D BSSRDF
- Number of possible slices is 4+6+4+1 = 15.
 Not all make sense, but most do and have begun to be studied
- One (main) branch of this taxonomy seen so far
 A total of 8 slices (1+1+3+3)
 - Now, proceed to consider other (more exotic) possibilities

Taxonomy of 8D Scattering Function 1

$f(\vec{x}_i, \vec{\omega}_i; \vec{x}_o, \vec{\omega}_o)$

- Function of two spatial positions, two spherical angles (4 total)
- Can consider any subsets of 1-4 of these
 Slices of the full 8D BSSRDF
- Number of possible slices is 4+6+4+1 = 15. Not all make sense, but most do and have begun to be studied
- One (main) branch of this taxonomy A total of 8 slices (1+1+3+3)
- Second branch of taxonomy
 Relighting, incl. with incident light fields, subsurface scattering
 3 additional slices (0+1+2+0). *Total 11 (what happened others?)*

Review of 8D and 6D

$f(\vec{x}_i, \vec{\omega}_i; \vec{x}_o, \vec{\omega}_o)$

- 1 slice at 8D, 4 possible slices in 6D (drop any variable)
- We have seen only 2 possible slices. What happened others?
- Either remove a spatial dimension (1 slice) Spatially varying BRDFs (spatial incident = outgoing) • Only 1 slice, not the two expected
- Or remove an angular dimension (1 slice) Relighting with incident light fields
 - No easy interpretation for $f(\vec{x}_i; \vec{x}_o, \vec{\omega}_o)$

Review of 4D

$f(\vec{x}_i, \vec{\omega}_i; \vec{x}_o, \vec{\omega}_o)$

- 6 possible 4D slices (choose 2 variables out of 4)
- Seen 3 of these in main branch (from 6D SVBRDF)
 - BRDF
 - Incident Light Field
 - Surface Light Field
- Another 2 in second branch
 - Subsurface scattering (heterogeneous)
 - Relighting

• Only 5 of the 6 slices studied

No easy interpretation for $f(\vec{x}_i; \vec{\omega}_o)$

Review of 2D

$f(\vec{x}_i, \vec{\omega}_i; \vec{x}_o, \vec{\omega}_o)$

- 4 possible 4D slices (chose 1 variable out of 4)
- Seen 3 of these in main branch (from 6D SVBRDF)
 - Diffuse texture (only 1 slice)
 - Incoming environment map
 - Outgoing lumisphere

Historical Timeline

- Built up from 2D to 4D to 6D to 8D functions
 - 2D functions (texture, env maps) known since 1975-80
 4D functions (light fields) in 1996 catalyzed revolution
 - 6D functions (CURET 1999, Incident LF 2003)
 - 8D functions 2006, first acquisitions of full transport
- Generally, individual papers on each topic
- General framework and theory only now emerging

Historical Timeline: Details 2D

- Texture Maps [Catmull 1974]
- Environment Maps [Blinn 76, Miller & Hoffmann 84]

 "Lumispheres" not much work on alone (most in context of surface light fields, relighting)

Historical Timeline: Details 4D

- BRDFs have a long history (70^s 80^s), but work on measuring them is accelerating in last 10 years
- Light Field Rendering / Lumigraph
 Levoy and Hanrahan 96 ; Gortler et al. 96

Historical Timeline: Details 4D

- BRDFs have a long history (70^s 80^s), but work on measuring them is accelerating in last 10 years
- Light Fields and more general 4D functions
 Reflectance fields (relighting faces) Debevec et al. 00
 - Surface Light Fields (Wood et al. 00 ; Nishino et al. 99)
 - Incident Light Fields (Unger et al. 03 ; Goesele et al. 03)
 - Heterogeneous Subsurface Scattering (Peers et al. 06)

The holy grail of 8D

- Complete light transport of a complex scene
- No complete solutions yet, but first papers have appeared (Garg et al. 06)
- At this point, all 11 functions in taxonomy have had at least the first paper on them (although there is still much to do)