## Advanced Computer Graphics (Fall 2009)

CS 294, Rendering Lecture 10
Precomputation-Based Real-Time Rendering
Ravi Ramamoorthi

http://inst.eecs.berkeley.edu/~cs294-13/fa09

## Motivation

- Previously: seen IBR. Use measured data (real photographs) and interpolate for realistic real-time
- Why not apply to real-time rendering?
- Precompute (offline) some information (images) of interest
- Must assume something about scene is constant to do so
- Thereafter real-time rendering. Often accelerate hardware
- Easier and harder than conventional IBR
" Easier because synthetic scenes give info re geometry, reflectance (but CG rendering often longer than nature)
- Harder because of more complex effects (lighting from all directions for instance, not just changing view)
- Representations and Signal-Processing crucial



## Why is This Hard?

- Plain graphics hardware supports only simple (point) lights, BRDFs (Phong) without any shadows
- Shadow maps can handle point lights (hard shadows)
- Environment maps complex lighting, BRDFs but no shadows
- IBR can often do changing view, fixed lighting
- How to do complex shadows in complex lighting?
- With dynamically changing illumination and view?

Relighting as a Matrix-Vector Multiply


$$
=\left[\begin{array}{cccc}
T_{11} & T_{12} & \cdots & T_{1 M} \\
T_{21} & T_{22} & \cdots & T_{2 M} \\
T_{31} & T_{32} & \cdots & T_{3 M} \\
\vdots & \vdots & \ddots & \vdots \\
T_{N 1} & T_{N 2} & \cdots & T_{N M}
\end{array}\right]\left[\begin{array}{c}
L_{1} \\
L_{2} \\
\vdots \\
L_{M}
\end{array}\right] \text { 草 }
$$



## Problem Definition

Matrix is Enormous

- $512 \times 512$ pixel images
- $6 \times 64 \times 64$ cubemap environments

Full matrix-vector multiplication is intractable

- On the order of $10^{10}$ operations per frame

How to relight quickly?

## Outline

- Motivation and Background
- Compression methods
- Low frequency linear spherical harmonic approximation
- Factorization and PCA
- Local factorization and clustered PCA
- Non-linear wavelet approximation
- Changing view as well as lighting
- Clustered PCA
- Factored BRDFs
- Triple Product Integrals


Relighting as a Matrix-Vector Multiply

$=\left[\begin{array}{cccc}T_{11} & T_{12} & \cdots & T_{1 M} \\ T_{21} & T_{22} & \cdots & T_{2 M} \\ T_{31} & T_{32} & \cdots & T_{3 M} \\ \vdots & \vdots & \ddots & \vdots \\ T_{N 1} & T_{N 2} & \cdots & T_{N M}\end{array}\right]\left[\begin{array}{c}L_{1} \\ L_{2} \\ \vdots \\ L_{M}\end{array}\right]$

## Idea of Compression

- The vector is projected onto low-frequency components (say 25). Size greatly reduced.
- Hence, only 25 matrix columns
- But each pixel still treated separately (still have 300000 matrix rows for $512 \times 512$ image)
- Actually, for each pixel, dot product of matrix row (25 elems) and lighting vector ( 25 elems) in hardware
- Good technique (becoming common in games) but useful only for broad low-frequency lighting


## Outline

- Motivation and Background
- Compression methods
- Low frequency linear spherical harmonic approximation
- Factorization and PCA
- Local factorization and clustered PCA
" Non-linear wavelet approximation
- Changing view as well as lighting
- Clustered PCA
- Factored BRDFs
- Triple Product Integrals

PCA or SVD factorization


- Applying Rank b:

- Absorbing $\mathbf{S i}$ values into $\mathbf{C}^{i x}$



## Idea of Compression

- Represent matrix (rather than light vector) compactly
- Can be (and is) combined with low frequency vector
- Useful in broad contexts.
- BRDF factorization for real-time rendering (reduce 4D BRDF to 2D texture maps) McCool et al. 01 etc
- Surface Light field factorization for real-time rendering (4D to 2D maps) Chen et al. 02, Nishino et al. 01
- Factorization of Orientation Light field for complex lighting and BRDFs (4D to 2D) Latta et al. 02
- Not too useful for general precomput. relighting " Transport matrix not low-dimensional!!


## Local or Clustered PCA

- Exploit local coherence (in say $16 \times 16$ pixel blocks)
" Idea: light transport is locally low-dimensional. Why?
- Even though globally complex
- See Mahajan et al. 07 for theoretical analysis
- Original idea: Each triangle separately
- Example: Surface Light Fields 3D subspace works well

Vague analysis of size of triangles
" Instead of triangle, 16x16 image blocks [Nayar et al. 04]

- Clustered PCA [Sloan et al. 2003]
" Combines two widely used compression techniques: Vector
Quantization or VQ and Principal Component Analysis
" For complex geometry, no need for parameterization / topology



## Outline

- Motivation and Background
- Compression methods
- Low frequency linear spherical harmonic approximation
- Factorization and PCA
- Local factorization and clustered PCA
- Non-linear wavelet approximation
- Changing view as well as lighting
- Clustered PCA
- Factored BRDFs
- Triple Product Integrals




## Problem Characterization

6D Precomputation Space

- Distant Lighting
- View
- Rigid Geometry

With ~ 100 samples per dimension
$\sim 10^{12}$ samples total!! : Intractable computation, rendering


## Clustered PCA

- Use low-frequency light and view variation (Order 4 spherical harmonic $=25$ for both; total $=25 * 25=625$ )
- 625 element vector for each vertex
- Apply CPCA directly (Sloan et al. 2003)
- Does not easily scale to high frequencies
" Really cubic complexity (number of vertices, illumination directions or harmonics, and view directions or harmonics)
- Practical real-time method on GPU

Factored BRDFs: Critique

- Simple, reasonably practical method
- Problem: Non-optimal factorization, few terms
- Can only handle less glossy materials
" Accuracy not properly investigated
- Very nice synthesis of many existing ideas
- Comparison to triple product integrals
- Not as deep or cool, but simpler and real-time
- Limits BRDF fidelity, glossiness much more
- In a sense, they are different types of factorizations


## Outline

- Motivation and Background
- Compression methods
- Low frequency linear spherical harmonic approximation
- Factorization and PCA
" Local factorization and clustered PCA
- Non-linear wavelet approximation
- Changing view as well as lighting
- Clustered PCA
- Factored BRDFs
- Triple Product Integrals

Factorization Approach



## Triple Product Integrals

$$
\begin{aligned}
& B=\int_{s t} L(\omega) V(\omega) \bar{\rho}(\omega) d \nu \quad \text {, } \\
& =\int_{s}\left(\sum_{i} L_{i} \psi_{i}(\omega)\right)\left(\sum_{i} V_{i} v_{i}(\omega)\right)\left(\sum_{t} \bar{s}_{s} \psi_{n}(\omega)\right) d \omega \\
& =\sum_{i} \sum_{j} \sum_{t} L_{i} V_{j} \tilde{R}_{k} \int_{s i} \nu_{t}(\omega) \Psi_{j}(\omega) \bar{V}_{k}(\omega) d v \\
& =\sum_{i} \sum_{i} \sum_{k} L_{i} v_{j} \bar{\rho}_{2} q_{k t}
\end{aligned}
$$



## 2. Sparsity in Light Approx.



Approximation Terms

## Summary of Wavelet Results

- Derive direct $O(N \log N)$ triple product algorithm
- Dynamic programming can eliminate $\log N$ term
- Final complexity linear in number of retained basis coefficients


## Summary

- Really a big data compression and signalprocessing problem
- Apply many standard methods
" PCA, wavelet, spherical harmonic, factor compression
- And invent new ones
- VQPCA, wavelet triple products
- Guided by and gives insights into properties of illumination, reflectance, visibility
" How many terms enough? How much sparsity?


## Broader Computational Relevance

- Clebsch-Gordan triple product series for spherical harmonics in quantum mechanics (but not focused on computation)
" Essentially no previous work graphics, applied math
- Same machinery applies to basic operation: multiplication
- Signal multiplication for audio, image compositing, ....
- Compressed signals/videos (e.g. wavelets JPEG 2000)



## Subsequent Work

[^0]
[^0]:    - My survey linked from website (lecture only covers 2002-2004)
    - Varied lighting/view. What about dynamic scenes, BRDFs
    - Much recent work [Zhou et al. 05, Ben-Artzi et al. 06]. But still limited for dynamic scenes
    - Must work on GPU to be practical
    - Sampling on object geometry remains a challenge
    - Near-Field Lighting has had some work, remains a challenge
    - Applications to lighting design, direct to indirect transfer
    - New basis functions and theory
    - Newer methods do not require precompute, various GPU tricks
    - So far, low-frequency spherical harmonics used in games, allfrequency techniques have had limited applicability

