
CS 294-13: Assignment 1 — Monte Carlo Path Tracing

Ravi Ramamoorthi

1 Introduction

The goal of this assignment is to build a basic Monte Carlo global illumination rendering system using path
tracing. There have been many subsequent advances over path tracing, such as photon mapping, irradiance
caching, bidirectional importance sampling, and metropolis light transport. However, it remains a core
reference algorithm. In addition, it provides a basic framework to explore a variety of new algorithms, some
of which are current subjects of great interest in rendering research.

This assignment should be completed in groups of two. Both partners will receive the same grade. If
you absolutely want to work alone, you may do so, but similar requirements will apply. There is currently
no source code for this assignment, and as noted below, it will be turned in by creating a website. Future
editions of the course may provide more support, but the point is also to get you to work independently and
communicate your results, given that this is an advanced graduate course.

Since the background of students may vary, I will provide several options below for completing the
assignment, based on how much experience you already have with writing rendering systems. We leave it to
your judgement and honesty to self-identify in the categories below.

• For those who have not previously written a ray tracer, 30% of the grade can be obtained for completing
a basic ray-tracing assignment, which is given separately.

Others can start with existing code they have access to for basic raytracing. In this case, you are not
required to comply with the specific instructions in the basic raytracing assignment, although you may
still want to take a look at it as a reference.

In the event you have a basic raytracer available, but need to upgrade its capabilities, such as adding
acceleration structures or additional primitives, up to 20% of the grade for the assignment can be
obtained for these improvements (not available to those writing a basic raytracer from scratch, where
the maximum is already 50%).

For those who need to first build or modify an existing raytracer, they are expected to start very early

on the assignment, since basic raytracing will be covered in the first lecture. This will allow them to be

up to par with students who begin directly with Monte Carlo path tracing.

• 75% (60% for those writing a raytracer from scratch) of the grade will be available for demonstrating
a basic path tracing capability of global illumination. This involves randomly generating multiple rays
for a pixel, deploying a termination mechanism like Russian Roulette, and generating one or two rays
at an intersection to evaluate direct and indirect lighting, respectively. Your assignment should also
properly document the results, including at least a Cornell box, and a shiny sphere on a plane, showing
the various effects.

• 25% of the grade (10% if writing a raytracer from scratch) is for making the path tracer robust, including
effects like antialiasing, depth of field (sample the aperture), soft shadows and motion blur. A minimum
of Lambertian plus Phong BRDFs with basic importance sampling should also be supported.

• A variety of extra credit items will be possible, and should be discussed with the instructor before
implementation. The main idea is to bring you up to date with current research in rendering. One
immediate extension is to implement BRDF importance sampling for general materials per Lawrence
et al. 04. A second is to also include complex image-based lighting, on the lines of Agarwal et al. 03.
A third suggestion is to speed up multidimensional rendering following Hachisuka et al. 08. You may

1



also want to try implementing photon mapping following the work of Jensen et al. Any of these extra
credit items can also substitute for making the path tracer robust above (but all groups must submit
a working basic path tracer in any case).

2 Submitting the Assignment and Logistics

Since one of the goals of preparing for research is to also communicate clearly, the assignment must be
turned in either by submitting a PDF by e-mail to the instructor (as you would a scientific paper), or by
creating a website and sending a pointer to it. Document your results properly, showing the various types
of scenes your method can handle. Explain any interesting algorithmic aspects. It is likely you will need to
create some test scenes, though you can get some inspiration from the Cornell Box (you can easily find the
geometry for this online, or simply type it in...) and simple spheres on a table.

Failure to fully document the results of the program will likely lead to unhappiness from me. Be honest,
and note what works and what doesn’t; this will be the most fun, and make the assignment easiest to grade.
Some part of the grade will be reserved for the clarity of the writeup.

If you make a website, do not modify it after the due date. In either case, please include links to the
source code and executable, and again do not modify them after the due date.

Support: Feel free to contact me regarding questions. There is no code framework provided for this
assignment. If needed, you are welcome to look at online code sources, like POVray or PBRT for inspiration,
but all code turned in must generally be your own. If in doubt, ask. [This does not apply to basic utility
code, such as for reading and writing image files in different formats].

Ray tracing and rendering are covered in many textbooks and online materials, although none is “the”
textbook for the class. A good reference is Eric Veach’s PhD thesis at Stanford. Of historical interest is the
original Kajiya 86 rendering equation paper, and Cook’s 84 paper on distribution ray tracing. These are all
linked in the reading resources from the class website. A suitably encyclopedic work is Andrew Glassner’s
Principles of Digital Image Synthesis. The PBRT book on physically based rendering is another good source.
A number of other textbooks and siggraph course notes can be used. Ask the instructor if needed for other
suggestions.

Basic Ray Tracer: For those of you who first need to build a basic ray tracer, please see the supplemental
assignment. Note that as written, that assignment is limited to triangles and spheres, without acceleration
structures. You may wish to extend with features needed for path tracing.

3 What you need to implement: Basic Path Tracing

The first goal is to implement a basic Monte Carlo Path Tracing system. The basic requirements are as
follows:

Trace multiple primary rays for each pixel: In standard Whitted Ray Tracing, only a single ray is
traced for a pixel (excluding antialiasing). By contrast, in Monte Carlo methods, multiple samples are drawn,
with their values being averaged. Thus, you will trace a certain number of rays for each pixel, averaging
their contributions (in doing so, pay careful attention to the statistics; you must divide by the probability of
each path to not bias the results). The number of rays or paths at each pixel controls how much variance or
noise the final image will have; it is a tradeoff between computation time and image quality. For all of your
final results, please report the number of rays traced per pixel.

Trace rays into the scene: In what follows, we discuss what happens to a single ray. First, it will
intersect with the scene, as in standard ray tracing. Where path tracing differs is what happens once a ray
hits a surface.

2



In general, path tracing uses a probability to decide where the secondary ray should be cast. First, we
must choose whether to sample direct lighting, indirect “diffuse + glossy”, mirror reflections or emission.
Emission is generally only from the light sources, and is probably not immediately relevant here.

Probabilities for type of ray: In general, we will use some probabilities to determine what type of
secondary ray to use: direct, indirect, or mirror (where relevant... there is no need to initially implement
mirror surfaces and mirror reflections for path tracing... those are more relevant for Whitted ray tracing
that cannot handle general materials). The probability should be noted, as the final statistical Monte Carlo
calculation divides the value by the probability (for example, if a probability of one-half computes indirect
lighting, its value must be scaled by two for correctness, since only one-half the rays will sample it).

Once the type of ray has been determined, we still need to decide the exact direction. For direct lighting,
we can pick one of the light sources (say, based on the intensity of the light; this is related to importance
sampling), and shoot shadow rays to determine shading in the conventional way.

For indirect lighting, you could simply pick a random direction on the hemisphere. Cosine-weighting (to
account for the Lambertian cosine factor) will improve the results. For later robustness, you should also
importance sample the combination of diffuse Lambertian and specular Phong BRDF. Note that the weight
of the photon is decreased by the reflectance of the material in question, so after several bounces, it will have
low weight.

Additional Features: Note that in the above formulation, a ray can be traced forever, though its
contribution diminishes with more bounces. Cutting off at a certain number of bounces, as in Whitted ray
tracing, can introduce bias. Instead, you may wish to implement Russian Roulette sampling, whereby a
given photon is either accepted or rejected (if accepted, it’s weight should be increased to account for the
rejection probability). The probability of rejecting photons should increase for low weight.

Finally, while “pure” path-tracing chooses between direct and indirect light at each step, you may want
to simply use two rays, one to sample direct lighting, and one for the indirect to simplify the calculations.
Since the direct lighting ray is not reflected further, this does not lead to an exponential increase in rays
with the number of bounces, and the accuracy of the solution may improve.

4 Robustness and Multidimensional Integration

The ideas of Monte Carlo path tracing and distribution ray tracing make it easy to take into account a variety
of effects including antialiasing, motion blur, soft shadows, and depth of field. To demonstrate robustness
and show more interesting images in your solution, you should demonstrate at least one of the above effects.

Antialiasing is perhaps the simplest, just by for each ray, picking where in the image plane pixel it goes
through; you can simply assign it a random location or use stratified sampling for lower variance. It will
be important to find good examples to show the power of the technique. Soft shadows from an area light
source are similar, in that the direct lighting rays just need to sample the light source. Again, they can pick
a location randomly or you can stratify. Motion blur is handled by distributing rays through time, when you
generate the initial rays through a pixel, while depth of field distributes by location on the lens aperture.

In addition, you should implement proper importance sampling of the Lambertian + Phong BRDF, so
you can most efficiently compute the effects of multiple bounces of rays.

5 Extra Credit

There are certainly many possibilities to extend path tracing, and these can provide avenues for extra credit.
Some possibilities are listed below. You may wish to speak to the instructor before tackling any of these.
Since this is extra credit, it is specified only at a very high level. There are many other possibilities so talk
to the instructor if you have other ideas.

• Implement one of the extensions like bidirectional path tracing, photon mapping, or Metropolis Light
Transport.

3



• Include general BRDFs for materials, and extend your importance sampling scheme per Lawrence et
al. 04

• Include image-based environment lighting per Agarwal et al. 03

• Explore ways of accelerating multidimensional rendering, for example the multidimensional adaptive
sampling paper of Hachisuka et al. 08.

• Optimize your path tracer for efficiency by optimizing the ray-tracing routines, including acceleration
structures, and implementing many Monte Carlo importance sampling and stratification methods.

4


