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ABSTRACT. Let 9 be an integral domain, (9(9) the integral domain of polynomials over 9. L~ 
P, Q E (P(9) with m = deg (P) _> n = deg (Q) > 0. Let  M be the matr ix  whose determina~ 
defines the resul tant  of P and Q. Let  M~j be the submatrix of M obtained by deleting the la~ 
j rows of P coefficients, the last j rows of Q coeilicients and the last 2 j+1 columns, exceptin 
cohlmn m + n - i - j (0 < i < j < n). The polynomial R j ( x )  = ~ . 0  det  (Mzj )x  i is the j-t 
subresu l tan t  of P and Q, R0 being the resultant.  If b = ~(Q),  the leading coefficient of Q, ther 
exist uniquely R, S E (P(9) such that  b~-'~+'P = QS + R with deg (R) < n;  define ~ ( P ,  Q) = 
Define P i  E (P(5:), iY the quotient  field ofg,  inductively:  Pi = P,  P~ = Q, P~ = (~(P~ , P"-I 
p~+~ ~ ( p ~  - ,~ ~; 1+~ = , t '~+,) /c  i - for i > 2 and n~+~ > 0, where cl = ~ ( P ~ ) ,  ni = d e g ( P d  and 
~ = n/ - n~.~ . P1,  P~, ' "" , P~, for k >_ 3, is called a reduced po l ynomia l  remainder  sequence 
Some of the main results are: (1) P~ 6 (P(9) for 1 < i < k; (2) P~ ~ ± A k R , ~ _ ~ - ~ ,  whet 
A~ = .t~,-~,'Il~:-L'~'~-~(~-~) ", (3) c~-~- lP~ = ~A~+~R,~.~ ," (4) R~ = 0 for n~ < j < n~_~ - 1. Takinl 
9 to be the integers [,  or (P~(I), these results provide new algorithms for computing resultant 
or greates t  common divisors of univariate or mult ivariate polynomials. Theoretical analysi~ 
and extensive test ing on a high-speed computer  show the new g.c.d, algorithm to be faste 
than known algorithms by a large factor.  When applied to bivariate polynomials, for example 
this factor grows rapidly with the degree and exceeds 100 in practical  cases. 

1. Introduction 

Let  9 be an integral domain, 6)(g) the integral domain of polynomials with co. 
efficients in a. Small letters a, b, c, . . -  are used for elements of a, capital letter~ 
P, Q, R, . . .  for elements of ~ ( 9 )  and x, y, - . .  for variables. As is well known, it 
deg ( P )  > deg (Q) > 0, there e x i s t a  ~ 0, b # 0, S a n d R s u c h t h a t a P  = 
QS + bR and deg (R)  < deg (Q). Say tha t  R is a remainder of P modulo Q. Two 
polynomials U and V are called associates in case there exist c # 0 and d # 0 
such tha t  cU = dV, and we write U ~ V. A remainder R is unique to within 
associates. In  fact, more generally, if P --~ P~, Q ~ Q~ and R is a remainder of P 
modulo Q, then R ~-~ R~ if and only if R~ is a remainder of P~ modulo Q1 • 

We say P1,  P2,  " -  , Pk (k > 3) is a polynomial remainder sequence (p.r.s.) if 
Pi+2 is a remainder of Pi modulo P~+i for 1 < i < k - 2; i t  is complete in case 
deg (Pk) = 0. The  zero polynomial is assumed to have degree 0. Clearly, deg (P1) _> 
deg (P2) > ' • • > deg (Pk) _> 0. For  any P~ and P2 with deg (P~) _> deg (P2) > 0, 
there exists a complete p.r.s. P1, P2, • • - ,  Pk.  If  P1,  P2, • • ", Pk and Q1, Q~, - - •, Q, 
are complete p.r.s. 's with P~ --~ Q1 and P2 ~'~ Q2, then k = r and P~"~Qi for 1 < i < k. 

For  any  P C (P(9), denote by  £ (P )  the leading coefficient of P (if P = 0, 
we s e t £ ( P )  = 0). L e t m  = deg (P ) ,  n = deg (Q), m _> n > 0, and define 
p(P, Q) = R, where R ( x )  = £ ( Q ) . P ( x )  - £ ( P ) . x m - " . Q ( x ) .  Inductively,  define 
o°(P, Q) P and p~+l(p, Q) i = = p(p (P,  Q), Q). Since deg (p(P,  Q)) < deg (P) ,  
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Reduced Polynomial Remainder Sequences 129 

there exists a least positive integer ]c such that  deg (pk(p, Q)) < deg (Q). We 
call k the rank of P over Q and write k = r(P, Q). Clearly, r (P,  Q) < .m - n + 1. 
Set 4I(P, Q) = pk(p, Q), where ]~ = r (P ,  Q); then, by induction on t~, there exists 
S such t.hat 2(Q)*.P = Q'S + (~(P, Q). Call ~ ( P ,  Q) the Euclidean "remainder of 
p modulo Q. A p.r.s. P~, P~, - .-  , P ,  is Euclidean in case P~+,~ = (~t(P~, P~+~) for 
1 ~ i ~ 1 c - - 2 .  

Let P(x)  ~ = 0  a~x ~, Q(x) ~,=o = m = '~ b~x, and let M be the matrix whose de- 
terminant defines the resultant of P and Q; i.e., M is the following m + n  by m + n  
matrix: 

~am a m - i  

i 0 a,,~ 

I .  
~0 0 

bn- t  

I 
i • 

!o o 

am am-t  a,n-2 

bl bo 0 
b~ bl bo 

al ao o o o 
ao o 0 

a t  a0 
0 o 
0 0 

bl b0J 

M is called the Sylvester matrix of P and Q. Let M~j be the submatrix of .,1/obtained 
by deleting the last j of the n rows of P coefficients, the last j of the m rows of Q 
coefficients and the last 23"+1 columns, excepting column m + n - i - j ,  for 
0 < i < j < n. The polynomial R i ,  defined by Rj(x) ~-~'=0 det ( l l~ j )x ,  is 
called the j-th subresultant of P and Q, for 0 < j < n. Notice that  deg (Rj) _< j ,  
and R0 is the resultant of P and Q. 

Let P1, P2,  " -  , Pk be a Euclidean p.r.s, with deg (P~) = h i .  Let Ri be the 
jth subresultant of P1 and P2 • In [1] it  was shown that  Pk is an associate of R,,,_,_I, 
and, in fact, explicit expressions were obtained for elements a and b of 'J such that  
aPk = =~bR,~_~_~, these expressions being products of powers of the leading co- 
efficients of P1,  P2,  • • • , Pk-1 • A p.r.s. P~, P~, • -. , Pk is regular in case r(P~, Pi+l) 
= deg (Pi) - deg (Pi+2) for 1 < i < /c - 2; it is normal in case deg (P~) -- 
deg (P~+I) = 1 for 2 < i < k - 1. From the definition of rank, we see that  every 
regular p.r.s, is normal. We also obtained in [1] the corollary that if P1, P.2 , . .  •, Pk 
is a regular Euclidean p.r.s., then Pk = =t=cR,k_~-~, where c is likewise explicitly 
given as a product of powers of the leading coefficients of P~, P2, • • • , Pk-1 • 

These results established clearly that,  excluding certain exceptional cases, the 
Euclidean algorithm in this form methodically introduces certain extraneous con- 
stant factors (i.e., powers of the leading coefficients) at a very rapid rate, mid is 
therefore inefficient. The results also engendered some speculation in [1] as to 
how best to circumvent this source of inefficiency. Two possible methods were 
proposed, criticized and dismissed. Another method was suggested uncritically 
but apprehensively. 

By methods of proof similar to those used in [1], we obtain in the present paper 
two new theorems on p.r.s. Theorem 1 pertains to what will be called a reduced 
p.r.s., this being a p.r.s, produced by  a modification of the Euclidean algorithm of 
[1]. In this modification, we discard the notion of rank and in place of the function 

m--n+l p 
(R, we use ~. We define 51(P, Q) as the unique R such that,  for some S, 2 (Q)  • 
= Q.S + R and deg (R) < deg (Q), where m = deg (P)  >_ n = deg (Q) :> 0. 
In addition to this change, we divide each remMnder, P~+2 = ~(P~ ,  P~+~), beginning 
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with i = 2, by £(P~)"~-~-~+~. The theorem shows these divisions are always 
possible, and that  the resulting p.r.s, bears a remarkably  simple relationship to 
the sequence of subresultants. Indeed, P~: = ±d/~nk_~-i and again d is explicitly 
given as a product of powers of the leading coefIicients of P~, P~, . . .  , P~_:; 
if P1, P~, • • • , Pk is normal, then d = 1. 

As a corollary of Theorem 1, if P1, P2, " • • , Pk is any p.r.s., then P i  is an associate 
of R~_~_~ for i _> 2, and moreover every subresultant is either zero or is an asso- 
ciate of some R~_~_I • We, therefore, set $1 = P1, S~ -- P2 and Si = R~_~_I 
for i > 3 and ni_~ > 0, and we call S~, $2, S3, • • • , Sk a subresultant p.r.s. Theorem 1 
provides an algorithm for computing the reduced p.r.s. P1, P~, • • • , P~ and from 
it the subresultant p.r.s. S~, S~, . . .  , S~. Theorem 2 provides an algorithm for 
generating the subresultant p.r.s, directly..~/[ore specifically, one computes S~+~ 
as fft(,b'~, Si+~) .a~/b~, where al and b~ are products of powers of 2(S~),  . - .  , 2 (Sd.  

The algorithms provided by these theorems and their corollaries for opera~ions 
in (P(g) are applicable whenever we have algorithms for operations in the integral 
domain ~. One significant example (indeed, the one which mot iva ted  the investiga- 
tion) is obtained by taking ~ to be go, the integral domain of the integers; or the 
in!~egral domain, ~0[x~, • ..  , x~] (or, what  is essentially the same, (P'(g0)), of n-vari- 
able polynomials with integer coefficients. The algorithms are useful for computing 
resultants and greatest common divisors of polynomiMs with integer coefficients 
in any number  of variables. 

The g.e.d. (greatest common divisor) algorithm provided by Theorem 1 (the 
reduced p.r.s, algorithm) has been programmed for the IB~VI 7094 computer and 
applied to numerous polynomials in one and two variables. For comparison, three 
other polynomial g.c.d, algorithms were also programmed for the same computer 
and applied to the same polynomials. Of these three, one is the commonly used 
Euclidean algorithm, one is the ALPaK algorithm (used in the A ~ P ~  system and 
described in [2]) and the third, the primitive p.r.s, algorithm, is a simplified but 
superior version of the AsPAI( algorithm. 

The results of these tests are reported in Section 3. In  brief, the Euclidean 
algorithm is so inefticient that  it is unusable except for univariate polynomials of 
degree 10 or less. Among the other three, the reduced p.r.s, algorithm is two to 
six times faster than the others for univariate polynomials. For bivariate poly- 
nomials, the situation is quite different. The reduced p.r.s, algorithm rapidly 
becomes 100 times faster than its competitors, the ratio increasing rapidly with 
the degrees of the polynomials. 

2. Theoretical Results 

Before starting Theorem 1, let us make more precise the definition of a reduced 
p.r.s. Recall from Section 1 the definition of C~(P, Q). Let 5: be the quotient field of 
~. Let P1,  P~, " "  , Pk be a p.r.s, with elements P i C  5°(ff). P1,  P~, " " , P k  
is said to be a reduced p.r.s, when P1, P2 ~ (P(g); P3 = (~(P1, P2); and Pi+2 = 
(-fi(Pi, Pi+l)/c~ ~-~+~ for 2 < i < k -- 2, where ci = 2(P~),  nl = deg (P~) and 
~ = n~ - n~+~. ActuMly we show (Corollary 1.1) tha t  every element P~ of a re- 
duced p.r.s, belongs to (P(g), but this does not follow immediately from the def- 
inition and so we temporarily consider p.r.s, over (P(~:). 

As all aid in proving Theorem 1, we now establish some conventions relating 
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matrices and polynomials. Let A be any matrix with r rows and s colunms, r < s. 
We define a function a such that  a ( A )  is a polynomial P with deg (P)  < s - r. 
Let A~ be the square submatrix of A obtained by deleting all of the last s - r + I 
columns of A, excepting column s - i ,  for 0 < i < s - r. Then P is the polynomial 
P(x) = ~ = ~  det (A s ) .S .  We call P = a ( A )  the associated polynomial  of A .  

Now let M be the Sylvester matrix of the polynomials P and Q, with deg (P) = m 
and deg (Q) = n. Let Ms be the submatr ix  obtained from M by deleting the last 
j rows of P, the l a s t j  rows of Q and the l a s t j  columns. My has m + n - 2j rows and 
m + n - j columns, and the result of deleting from M# all of the last j +  1 columns, 
excepting column m + n - j - i, is the submatrix M~i which was used to define 
the j th  subresultant, R j ,  of P and Q. I t  follows tha t  R~ = a ( M j ) .  

If  A is a matrix with 1 row and s columns, A = (a~, • • • , a~), then it can be seen 
that a ( A )  = P,  where P ( x )  = ~-_-~ as_ix ~. We are thus led to associate with any 
r by s matr ix  also the sequence of polynomials (P~, . . .  ~ P,) ,  where P~ = Ct(AO, 

A~ being the i th row of A. We set a * ( A )  = (P~,  • . .  , P~). Of course, A is uniquely 
determined by  a * ( A  ), given the number  of columns in A. As an example, let I be the 
polynomial I ( x )  = x. Then the Sylvester matrix, M, of P and Q can be described by 

m-1 ira-20 . . a * ( M )  = ( F - ~ P , I ~ - 2 P ,  . . .  , P , I  Q, .~, , , Q ) .  

In the following we denote by $i(P, Q) the j t h  subresultant of P and Q. We now 
prove the following lemma. 

LEMMA 1. Let  P 1 ,  P~ , • • • , Pk be a reduced p.r.s.  Let c~ = 2 (  P i) and n~ = deg ( P O 

for l < i _< k. Let  ~o = --  l and S~ = n~ - n~+l for  l < i < k - l .  Let  l < i < k - 2. 

Then, 
(a) $i(P~, P~+I) = ( . . . .  1) ( ' ' -J)( ' '+ ' - j )  c~ *'-'+l)(' '+l-j~ o~+lz(~'+')(~'+~-~)+~'+~+~ 

• $ j (P~+i ,  P~+2) for  0 _~ j < n~+~ ; 
(~i+1)$i+1 ^$i+1(61-1+1) C~$/($i+1--1)~ii+1--1 p for (b) S#(P~, P~+l) = ( - - 1 )  .~ • ~+~ "~÷s • ~+s 

j = n~+~ ; 
(e) S~(P~, P ~ )  ( 1) *'+~ *' ~+~ -- = - -  .c~-  . r ~  f o r j  = n~+l - -  1; 
(d) g i ( P i , P ~ + l )  = 0 forn~+~ < j  < n ~ + ~ -  1. 

Pnoov. Let Mi be the matrix wi th  a * (  M i )  = (In~+~--~-lP~, In~+~-S-~P~, "" " , 

g i  , iTnl--J--ilD~i+l, zr~-~s~i+i ,  • • • , Pi+i), so that  $~(P~, P~+i) = a(M~).  By the 
6i+1 ~i- i+i p definition of a reduced p.r.s., c~+l -P~ = P~+i.Q~ + ~ • ~+~ for some poly- 

nomial Q~ (including the case i = 1, since ~o = --1). Since n~+2 < n~, it follows that  
n~ = deg (P~+i.Q~) = n~+i + deg (Q0.  Hence, deg (Q~) = ~ and P~+i.Q~ is a 
linear combination, with coefficients in ~, of P~+i, IP~+~, . . .  , I~P~+~. More 
generally, 

~ i - - l + I T  r O 
~'+~ F P  I~P~+i.Q~ + c~ ~ " ~ ,  C i + l  " i "~ 

rr+lp and FP¢+~. q~ is a linear combination, with coefficients in a, of I ~ P ~ I ,  , ~+~, 
• . . ,  F+~P~+~. All of these polynomials occur in a*(M~) provided r _> 0 and 
r + ~ ~ n~ - j - 1, i.e., 0 < r < n~+l - j - 1. Hence, if we multiply each of the 

~+1  first n~+~ -- j rows of M~ by  C~+l and subtract  from each a suitable linear combina- 
tion of the last n~ - j rows, we obtain the matrix M / s u c h  that  

M /  . $i l + l v n i + l - - ~  --1T'~ $ / - l+ lTn t+ l - J - "2~  :) . ~ i - - l + l l o  ~*( ) : ~e~- ~ r~+~,c~ ~ - ~ ,  " ' , ~  -~-~,  

In~-~-~P~+~ , "'" , P~+O. 

If we now mult iply each of the first n~+~ - j rows of M / b y  c~ -~-~-1, we obtain M / '  
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t t .  with (~ ( M i )  = (I"~+1-i-*P~+2, "'" , Pi+~, F~-3-1Pi+l ,  " " ,  Pi+i). Now re- 
" " (~* M ,u. . ., arrange the rows of Mi  to produce M i  , where ( i ) = (I"~-i - lP~+l,  " Pi+i, 

I"~+I-J-IP~-2, • " , P~+2). B y  the derivat ion of M j "  from M~., we have 

X (hi--J) (rt¢ + l--j) --(~¢ _ 1 +1) (n i + l--J) - (  5 ¢ +1) (n i + 1--$')t'~[ ][//- 

W e  now consider the four cases of the lemma. Suppose first tha t  j < n~+~. Let M~.* 
be the matr ix obtained from M / "  by  deleting the first n~ --  n~+~ = 6~ + &+~ rows 
and columns. Clearly (~.(Mi*) = 8j(P~+I, P~+~) and ( t ( M j " )  = ci+i~+~+~ .¢z(lv/i~''" *'), 
since the first 6~ + ~+~ diagonal elements of M~." are c~+~ and only zeros occur below 
these diagonal elements. Combining this with (1) ,  and using (~(M~.) = $~.(P~, P~+t), 
we obtain  (a) .  

Now assume j = n~+~. Then  

deg (I"'+'-~-IP~+~) = ( n ~ a  - j - -  1) + ni+2 = n~a - 1, 

and hetlce M / "  is a tr iangular matr ix whose first n~ -- j d iagonal  elements are e~+~ 
and whose other  n~+~ -- j diagonal elements are c~+~. Hence 

~ n i - i ~ n i + t - y - l g  ~i i +~i,: + 1 ~ti+ t - 1  n 

Setting j = ni+~ in (1) ,  we have 

r - 1 ~(*~+~i+t)*i+'e~ " ( * ~ - ' + l ) * i + ' - ( * i + l ) ~ + ~ ° /  i ~+~ oik~D--i, Pi+t) = a ( M f f )  = ei+l ci+2 -/"i+2 . 

Since ( _  [)o,+*,+p*~+, = (_1)(*~+1)*~+~ arid 6~ + &+x -- (6~ + 1)&+~ = --6~(&+~ - 1), 
we obtain (b) .  

Assume j = ni+t -- 1. Then  (~*(M/")  = ( I " ' - i - tP~+~,  . . .  , P ~ ,  P~+~). Hence 
M i is t r iangular  and a ( M / " )  lii+In " = c~+~ r i+~.  Set t ing j = n~+~ - 1 in (1) ,  we have 

( - -  ] i i+1  j l  i , ~--" = e i + l  .~'~-2 , 

fi'om which (c) is obtained. 
Finally, assume ni+~ < j < n~+x -- 1. Then  

deg (I"~+~-i-XP~+~) = ni+t - j - 1 + n~+~ = (n~+t - 1) + (n~+~ -- j )  < n~+~ - 1, 

and n i + t - j  > 1. Hence, M i "  is t r iangular  and the (n~ - j + 1)-th diagonal element, 
which is not  the last, is zero. So a ( M / " )  = 0. Then,  by  (1) ,  (~(M~.) = 0, estab- 
lishing (d) .  

LrZMMA 2. Let  P~,  P , , ,  • • • , P~ be a reduced p.r.s. Let  c~ = £(P~), ni = deg (Pi) 

and 6~ = n~ - n~+~ . Let 2 < r < k --  2 and set a~ = ~ - ~  (n~ - j)(n~+l - - j ) ,  where 
0 <_ j < nk-~.  Then 

~ i (P , ,  . P ~ ) =  ( - - 1 )  ~" [,=~cT~-~°~-~)leT°~-l+~)("~+'-~)$i(p~,  P r + l ) -  

PnooF.  Setting i = 1 in L e m m a  1 yields 

$~( P~ , P~) = ( - 1) ("~-'~("~-~). c-;°'+~)(",-,~+~+~'~. $~( p~ , p~) .  

Since - ( ~  + 1)(n~ - - j )  + ~ + it~ = --(6~ + 1 )~  - (6~ + 1)(n~ - j )  + 8~ + ~ = 

--~1(~.~ --  1) --  (St + 1)(n~ -- j ) ,  this proves L e m m a  2 for r = 2. Assume Lemma2 
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holds for r and that r -+- 1 _< /c -- 2. Using Lemma 1 with i = r, we have 

$¢(p~ , P~) = ( - 1 ) "  [~=~ Ci-$i-l(~i--l) 1 cT(~'- 'H)(~+'-¢)$~(p, , p,+,)  

= ( - -1 )~+( ' , -~ ) ( ' ,+~-~) . [ i  ~,=~ c7~'-~(~'-~) 1 

• C~- (St -- 1+ 1 ) (nr + I-- J)+($r -- 1+ 1) (nr + l--J) 

C~. (~r +1) (n r + l-- j)  +Sir +3r + 1 • ,+~ "$~(P~+I , P,+~). 

Since 

o', + ( n ,  - j ) (n~+l -- j )  = ~,+~ 

and 

--(~r -~- 1 ) ( n r + l  - -  j )  + ~r + ~r+l = - - ( ~ r  "Jr 1)~,+1 - -  (8,  + 1)(n,+~ --  j )  

+ ~, + ~,+1 = --~,(~,+~ -- 1) -- (8, + 1)(Ur+~ -- j ) ,  

this shows L e m m a  2 holds for  r + l .  By  induction,  this completes the proof of 
Lemma 2. 

TI-IEORE~ 1. Let  P 1 ,  P ~ ,  " '"  , P~ be a reduced p.r.s.  Le t  e~ = £ ( P ~ ) ,  n~ = 

deg ( P i )  and ~ = n~ - n~+l. Then ,  
l~¢kT~-~k--1 --~i-1(6i--1)~ Sk I--II) k--1 (a) $~k(P1, P~) = ( - -~ J  t l l i=2c~ jc~ " ~ where a~ = ~=~n~n~+~ 

+ (n~ + k)n~ ; 
• k k--2 (b) $~k_~_~(P~, P~) = ( - - 1 )  [II,=~ c7~'-~(~'-1)]P~ where r~ = ~ = ~  n,¢~+l + 

(n~ + ~)(n~_~ + 1); 
(e) $i(P1, P~) = 0 for  n~ < j < n~_~ - 1. 

PROOF. If k = 3, these results follow by  setting i : 1 in Lemma 1; hence we 
may assume k > 4. Sett ing r = /~ - 2 and j = n~ in Lemma 2, we obtain 

, ~ j ~-~ o ~ _ 2 ,  P ~ - i ) ,  

where 
k--3 

a = ~ (n ,  --  n~)(n~+l -- nk) .  
i=l 

Setting i = k -- 2 in (b )  of L e m m a  1, we obtain 

1 ~(~k-2+l)~k--l~k--l(~k--3+l)x"'~k-2(~k--l--1)~Sk--l--ID 

Combining these two equat ions results in 

$.~(P1, P,)(--1)a'*V~e~-$'-l($~-l)] ~8 ' - ' -1°  t*k .Lk  
L . i~2  

where 

i = 1  
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rrs:n-u~ g "=--" 
k--3 

0~1 ~- E 
i = l  

k--2 

k--2 

---E 
i=1 

k--2 

proving (a) .  

to denote congruence modulo two, 

(n~ - n~)(ni+~ -- n~) + (6k_~ + ~k-i)~-~ 

(n~ -- n~)(n~+~ -- n~) 

k--2 k--2 

n,~+~ + nk ~ n~ + nk ~ n~+~ + (k - 2)n~ 
i ~ l  i=1 

k--1 

n,~ni+~ + n~(n~ + nk-~ + k) = ~ n,,nn~+1 + (n~ + k)nk = o'k, 
i=1 

Setting r = k - 2 and j = nk_l - 1 in Lemma  2, we have 

- F ~  c7~'-1°~-~) 1 o-(~k-~+,)8 ,~ Pk-,), $,k , - I (P1 ,  P2) = ( - - 1 )  8 I_i =1 ' ~k--2 ttk_i--lt, rk - -2 ,  

where 
k--8 

B = ~ (n~ -- nk_l + 1)(ni+1 -- nk-x + 1). 
i=1 

Setting i = k - 2 in (c) of Lemma 1, we have 

8-k- ,-i ( Pk-2, Pk-x) = ( -- 1 ) ~k - :  +x8~-~' +~Pk. 

Combining these two equations results in (b)  except with 
k--3 

~1 = E ( h i  - -  n k - I  + 1)(n~+l -- nk-1 + 1) + 5k-~ + 1 

in place of rk.  However, 
k--3 

~1 ~ ~ n,n~+1 + (nk-1 + 1)(nl  + nk-~) + (k -- 3)(nk_l + 1) + nk-2 + nk-1 -Jr 1 
i=1 

k--2 

-~ ~ n#ti+l + nk_lnl + n~ + nk-2 + ( k + 1)(nk_l + 1) + nk_2 + (nk_l + 1) 
i=1 

k--2 

-~ ~ n , n i + l  + (nk-1 + 1)(nl + k + 1 + 1) -~ rk,  
i~1 

proving (b) .  
Assumenk  < j < nk-1 -- 1. B y L e m m a 2 ,  w i t h r  = k - 2, 8~(P1, P~) N 

8~(Pk-~, Pk-~) and by (d)  of Lemma 1, with i = k - 2, Ss(Pk-2, Pk-1) = 0, 
proving (c).  

COROLLARY 1.1. Let P~ , P~ , . . .  , P~ be a reduced p.r.s. Then P~ ~ @( g) f o r  
l < i < k .  

PRooF. By induction on k. For  ~ = 3, the corollary holds by the definition of a 
reduced p.r.s. Assume it holds for k, and let P1,  P2 ,  " "  , P~+~ be a reduced p.r.s.  
Then P~,  P~,  . . -  , P~ is a reduced p.r.s, so, by hypothesis, P~,  P~, . . .  , P~ 
(p(~). Hence, c~, ~ ,  . . .  , ck ~ g. By  (b)  of Theorem 1, 

P~+~ = :a:: ~.~-~ (P i  P~). 
Li=2 i j 
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B u t  Snk--1 ~ (~) (~) ,  }~nd ~ i - l ( ~ i  - -  1)  k 0 f o r  2 < i < k - -  1. H e n c e  Pk+l E ~ ( a ) .  
COI~OLLARY 1.2. Let P~ , P2 , • • • , Pk be a complete reduced p.r.s. Then every nan- 

zero subresultant of P~ and P2 is an associate of some P~ . 
PROOF. Let  S~(P~, P2) be any  nonzero subresultant .  Then  nk = 0 < j < n2. 

Hence, for some i, 3 < i < k, n~ ~_ j < n~_~. Now apply Theorem 1 with/c  = i. 
By (c) of Theorem 1, j = n~ o r j  = ni_~ - 1, since Ss(P~, P , )  # 0. Hence, by  (a)  
and (b) of Theorem 1, $ j (P1,  P2) ~-~ P i .  

COROLLARY 1.3. Let P1,  P2 ,  "'" , Pk be a normal reduced p.r.s. Let P1 ,  P~ , 
S~, " " ,  S~ be a subresultant p.r.s. Let n~ = deg (P~). Then P~ = (-1)("~+"~+t)~S~ • 

PROOf. By  definition of a subresul tant  p.r.s., S~ = $,,~_~-1(P~, P~). B y  nor- 
mality, & = n~ - n~+l = 1 for 1 < i ~ l¢ - 1. Now apply (b) of Theorem 1, noting 
that  n,n~+~ is even for 1 < i _< k - 2 and tha t  nk_~ = n~ -- (k - 3). 

COROLLARY 1.4. Let P~ , P~ , " "  , P~ be a normal complete reduced p.r.s. Then 

P~ is the resultant of P~ and Pe . 
PROOf• App ly  (a)  of Theorem 1, noting tha t  each 8~ = 1, each n,,t~+~ is even 

and n~ = 0. 
Theorem 1, pa r t  (b), provides an a lgor i thm for comput ing any  term, S~, of a sub- 

resultant p.r.s. P1 ,  P~,  S~, .- • , S~, ..  • . Namely,  one m a y  compute  the reduced 
• IN  ~k l~ I r  k -~  - - 8 1 _ i ( ~ i - I )  p.r.s. P~, P~, • • , Pk and then divide P~ by ( - ~ )  "l i~=~ c~ . However, we 

now seek to obta in  a direct me thod  for comput ing  the subresul tant  p.r.s., i.e., a 
method which provides a formula  for S~ in terms of P1 ,  P2 ,  S~, . - .  , S~_~ without  
recourse to the  reduced p.r.s. To  this end the  following lemma is first proved• 

LEMMA3. LetP~ , P ~ ,  " "  , P ~ b e a  p.r.s, in(P(~:).Lete~ = £(Pi ) ,  n~ = deg (Pi), 

~ = n ~  - -  n~+~ . Let P~ = ( - - 1 ) ~ ' ~ ( P ~ ,  P~) and 

[ 1  P~+~ = ( - - 1 )  ~''c~ -~'-~-~" h e~ '~ "~ (P~ ,  ])i+1), 
j=2 

for 2 < i < lc -- 2, where the e¢ and f ~ are arbitrary integers. Let P~ , P~ , Sa , • • • , Sk 

be a subresultant p.r.s. Let 
k--2 k--2 

g~ = ~ n~ni+~ + (hi + ~ ) ( n~_~ -- 1) + ~ e{(n~+l - -nk_ l  + 1) 
i= l  i= l  

and 

Then 

k--2 

hlk = 6,i-l(~i -- 1) + ~ fli(n~+1 -- nk-1 Jr 1). 
y=i 

PROOF• 
P1 , P2 , " " • 
place of (a)  of L e m m a  1 the following: 

Sj(P~, P~+~) = ( - 1 )  (~-')(~+~ ')+~(~+~ ') 
(]i _ 1..{rl) (hi + t--~) f l (~{ +1) (~i + 1--$)-t"~i +~i + 1 

• Cl • Ci+l 

Pk = ( - - 1 )  gk Li=2 

By generalizing the proof of Lemma 1 to apply to the p.r.s. 
, P~ of the present lemma rather than the reduced p.r.s., we obtain in 

(2) 
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Similarly, in place of (c) we obtain:  

Ss(Pi,  P~+I) = ( - - 1 )  ~'+1+~' -~-~+l • c~ • c~ ~p "P~+2 for j = n/+l - -  1. (3) 

Now we carry out an induction as in Lemma 2 and obtain: 

S~(Pi, P2) = ( - 1 )  ~'. c7 ~'-~(~'-~) . c7 (~ , - ,~ ) (~ ,+H ) 
Li=2 J 

r--1 _ z r - 1  . . ]  

• F I I  c~ "-'/"('~'+~-~). "8~(Pr, er+l) (4) 
L i=2 --I 

for 2 < r  < ; 0 - - 2  and j < n ~ _ l ,  

where 

r--1 r--1 

Zr = ~ (n, -- j )  (ni+l -- j )  + ~ e,(n~+l -- j ) .  
i = l  i ~ l  

As in the proof of (b)  of Theorem 1, we now set i = k -- 2 in (3) a n d j  = nk-1 - 1 
and r = k - 2 in (4) ,  obtaining: 

_,,_3,7 $,k_, - l (Pk- : ,  Pk-1) = ( - - 1 )  "-2+~+~k-2. ~k-2 . l i e  ~, . j  -pk ; (5) 

- - - -  J L i  =3 

lk-s zk-3. ,, -I (6) 

where 

k--3 k--3 

ak-~ = ~ (n,  --  nk_l + 1)(ni+i -- nk_i + 1) + ~ e~(n~+l -- nk-i + 1). 
i=1 i=1 

Combining (5) and (6) and simplifying the exponent of - 1 ,  modulo 2, yields 
the conclusion of Lemma  3. 

We now seek to so determine the e, and f~  of Lemma  3 in such a way that  the 
p.r.s. P1,  P2,  " . . ,  Pk of Lemma  3 coincides with the reduced p.r.s. 
P~,  P~,  $3, . .  • , Sk,  if possible. A sufficient condition for this coincidence is, by 
Lemma 3, tha t  

r--2 

g, = ~ nln~+i + (hi +'4" r)(n~_l - -  1) 

r--2 

+ ~ e ~ ( n i + l - - n ~ _ l +  1) ~ 0 ( r o o d 2 )  for 3 < r < k  
i=1 

and 

r--2 

h~, = ~ - l ( &  - 1) + ~ f s i (n~+ l  - n,_l + 1) = 0 
1=i  

for 2 < i < r - - 2 _ ~ k - 2 ,  

Setting g3 -~ 0 we have nln2 + (hi + 3)(n2 - 1) + el(n2 - n~ + 1) ~ 0 and 
hence el -~ nl + n~ + 1 ~ 81 + 1. Now we notice tha t  gr+l -- g, -~- nr-lnr + nl~,A 
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r - 2  
÷ ~'~-I ~- n~ -~- 1 ~ ~ i ~ l e i ~ - I  ÷ e~_l. Hence if g~ _~ g~+l~0thene~_l  
~ _ l ( ~ : ~ e ~  ~ nl ~ n~ ÷ r) ÷ 1. Setting r = 3 in this formula, we obtain 
e 2 ~ 2 ( ~ +  1 + n ~ n ~ 3 )  + 1-~ ~ ( n 2 +  n3) + 1 ~ ~ +  1-~ 82~- 1. Simi- 
larly, setting r = 4 we obtain e3 ~ ~ ÷ 1. Set e~ = ~ + 1 for all i. Then 

r~2 

gr = (hi -~ r)(n~_l -- 1) + ~ [n~ni+l + (~  --{- 1)(n~+1 -- n~_l + 1)l 
i ~ l  

r--2 

(hi + r)(m_l  + 1) + ~1 [ni(n~_l + 1) -~ (n/+l + 1)(ni+l + n~_l + 1)] 

r--2 

-~ (nl + r)(n~_l -~ 1) + ~ (n~ + n~+l + 1)(n~_l + 1) 
i = I  

~ (,~_~ + 1) (n~ + r) + ~ (n~ + n~+~ + 1) 

(n~-i + 1)(nl  + r + nl + n~_l --}- r) =-- (nr-1 + 1)n,_l ~ 0. 

We now make a similar determination of the f~i. Setting r = i + 2, we obtain 
h~,~+~ = ~ ( ~ /  -- 1) ~ f ~ .  Hence h~.~+~ = 0 impliesf~ = - ~ ( ~  - 1). Setting 
r = i-t-  3, we obtain h/.~+~ = ~ - ~ ( ~ -  1) - t-f ,(&+l + 1) + ff/+~,~ . Hence h~.~+~ = 
h~.~+~ = 0 impliesf~+l.~ = --&_~( ~ -  1) + ~_~(~/-- 1)(~+~ + 1) = ~_~(~/-  1)~i+~. 
Similarly, setting r = i -t- 4, we obtain ~ ( ~  - 1) + f,(~+~ + ~+~ ~ 1) + 
f~+~.~(6~+~ + 1) + f~+~,, = 0, 

= ~ _ , ( ~  - 1 ) ( - 1  -f- ~+, ÷ ~+~ ÷ 1 - ~+,~+~ - ~+,) 
= - - ~ ( ~ / -  1 ) ( ~ + l -  1)~i+~. 

= 1 ~ m+l~ iWm--I • Assumef~i - -~ /_ , (~--  1) andre+m./= ( -  ~ -~-~'[1~1~ ($ ~ -  1)].~+,~.~hen, 
~s shown above, h/.~+~ = 0. Assume h~, = 0 and r > i + 2. Then 

r--2 r--2 

However, one can easily show by induction that 
r--2 

Hence h~,~+~ = 0 and, by induction, h~ = 0 for all r ~ i ~ 2. 
This completes the proof of the following theorem. 

nn~ = deg (S~), ~i = ni -- ni+l. Se~fii = --~i-~($i -- 1) and fi+,,i = ( - - 1 ) ' + ~ l  • 
. . ~ . ,  ($s--1)] .$1+, , for i> 2, r >  l a n d i + r < k - 2 .  Then 

S~ = ( - - 1 ) ~ l + l ~ t ( S 1 ,  $ 2 ) ,  

and 

Si+~ = ( - 1 )  ~'+~ c~ '~ • c ; ~ ' - ' - l . ~ ( S / ,  S/+~) 

f o r 2 ~ i < k - 2 .  
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3. G.C.D. and Resultant Algorithms 

As already mentioned, Theorem 1 provides new algorithms for computing resultants 
and greatest common divisors of polynomials in any  number  of variables with e0. 
cffieients from any integral domain ~0 provided, of course, tha t  we have available 
algorithm~ for the arithmetic operations in ~0. I f  r~ - I  is the number  of variables, 
then in applyi~,g Theorem 1 we rewrite our given polynomials as univariate poly- 
nomials in one variable with coefficients which are r-variate poly~mmials and take 
,¢ = (9~(~0) in Theorem 1. Although other choices are undoubtedly of interest, in the 
present paper we consider (with the exception of a few remarks) only the case where 
g0 is the integral domain of the integers. 

First, consider algorithms for g.c.d, calculation. Let  P ( x l ,  . •. , x~,  y) be a poly. 
nomial with integer coefficients in r ÷ l  variables, r > 0. Let 

P ( x l ,  . . .  , x , ,  y )  = ~ A i ( x l  , . "  , x , ) . y l .  
i=O 

Applying induction on r, we may  assume tha t  we can compute A -- ted 
(A0, A , , . . . ,  A,,), since for r = 0 we have the familiar Euclidean algo- 
rithm for computing the g.c.d, of integers. A is the content (with respect to y) 
and we write A = c o n t  (P) .  We can then compute /5  = P / A .  We call t5 the primi- 
tire part of P (with respect to y) and write/5 = p p ( p ) ,  p is primit ive (with respect 
to y), i.e., any common divisor of its coegieientsA~0, z{1, " " • , A:~ (A~ = A J A )  is a 
unit of 90[x~, .- • , x,] = (P~(,q0). Of course, the only units of (9~(~0) are 1 and -1 .  

Now let Q1, Q2 be nonzero elements of (P~+'(~0) and suppose we wish to compute 
Q = g e d  ((21, Q~). First compute A~ = eont (Q~) and P,~ = pp(Q~),  for i = 1, 2; 
then A = g c d  (A~, A2). I t  now suffices to compute P = gcd (P1,  P~) since 
(J = A .P, and we know that  P is primitive. Let n.~ = deg (P~). Since gcd (P1, P2) 
= g c d  (P~, P1), we may assumenl  _> n2. We may  also assume n2 :> 0 since other- 
wise P -: 1. Now let P1, P~., • " , Pk be any complete p.r.s. The  standard proof 
(see, for example, [3, Ch. XVI])  easily generalizes to show tha t  P = 1 if P~, ~ 0, 
and P = Pp( Pk-I)  if Pk = 0. 

We thus obtain, for each specification of an algorithm for computing a complete 
p.r.s. P1, P2, • • • , Pk starting with given primitive polynomials P~ and P2,  a g.c.d. 
algorithm. We now consider four such g.c.d, algorithms. Perhaps the most natural, 
most obvious ,%nd most commonly used algorithm is the Euclidean algorithm, ob- 
tained by taking P~, P,,, • • • , Pk to be the Euclidean p.r.s., generated according to 
its definition. 

Now let P1,  P2,  • • • , Pk be a primitive p.r.s, which begins with P1,  P2, i.e., a p.r.s. 
in which each P~ is primitive. We distinguish two algorithms depending on how 
such a p.r.s, is generated. The simplest generation method is given by 
P~+~ = pp ( (it (P~, P~+~) ). We call the resulting g.c.d, algorithm the primitive p.~'.s. 
algorithm. 

In the ALPAK system [2], the successive terms of a primitive p.r.s. P~,  P~, • •. , Pk 
are generated in the following more complex way. The  operation p of Section 1 is re- 
placed by~m operation~. L e t m  = deg (P)  > n = deg (Q)  > 0, a = 2(P), 
b = ~ (Q).Let c=  gcd (a, b), a = a/c,  b = b/c. Then ~ (p, Q) = p p ( ~ p  - M~-~Q). 
Now define ~0(p, Q) = p and, inductively, ~i+l(p, Q) = _ _i o(o (P ,  Q), Q). Then 
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Pi+2 = ~ ( P / ,  P i+1), where k = r ( P i ,  Pi+l), and this describes the method used in 
ALPAK. The g.e.d, algorithm so obtained will be called the ALPAK algorithm. 

The fourth g.c.d, algorithm is obtained by taking P1, P2, • • • , Pk to be the re- 
duced p.r.s, which starts with P~, P2, generated according to its definition, and 
we call this the reduced p.r.s, algorithm. 

Each of these four algorithms has been programmed for tile IBM 7094 computer, 
within the framework of the PM polynomial manipulation system [4], and hence their 
implementations do not differ in any essential details. Each algorithm was applied 
to a set of 7 pairs (P~, Q~), . . .  , (Pk, Qk) of univariate polynomials and a set of 5 
pairs (Ra, Sa), • • • , (RT, $7) of bivariate polynomials, each algorithm being applied 
to the same polynomials (except that some algorithms were too inefficient to do 
some problems in a reasonable amount of time). Each Pk, and each Qk, is a poly- 
nomial of degree 5k with random integer coefficients of two decimal digits, i.e., 
chosen at random (with uniform distribution) from the set {n: In I -< 99}. Each 
Rk, and each Sk, is a polynomial of total degree k with random one-decimal-digit 
coefficients. Thus Rk(X, y) = ~+j=oa~x~y j, with a~ C {n: l n l  < 9}, has 
(k qr- 1)(k + 2)/2 terms (a few of which may happen to be zero). Not surpris- 
ingly, each pair proved to be relatively prime. 

Table 1 gives the computing time required by each algorithm to compute the 
g.c.d, of each pair of polynomials to which it was applied. 

We now add a few remarks tending to explain and interpret these results as well 
as to provide a basis for extrapolation. 

Assume the Euclidean algorithm is applied to two univariate polynomials P, and 
P2, both of degree n, whose coefficients are approximately d decimal digits long, 
and assume further that the Euclidean p.r.s. P~, P2, • . . ,  Pk is regular (which ex- 
perience shows to be the typical case). Then the coefficients of P3 will be approxi- 
mately 2d digits long, those of P ,  approximately 5d digits long (since r(P=, Pa) = 2), 
those of P6 12d digits long and so on. In general, if the coefficients of P ,  are u~ 
digits long, then approximately u~+2 = 2u/+1 q- u~. Hence, approximately, u~ = 
(1 + -,,/2)i-~ d, 1 -4- "v/2 being the dominant root of x 2 = 2x + 1. Thus, for the 

Euclidean algorithm, the lengths of the coefficients increases exponentially and 
hence so does the computing time, a similar but more complex analysis applying 
for multivariate polynomials. We estimate that the computing time in Table 1 for 
applying the Euclidean algorithm to the univariate polynomials of degree 15 would 
be of the order of one week, and would produce integers about one million decimM 
digits long ! 

For the other three algorithms the situation is entirely different. Let P1 and P= be 
univariate polynomials of degree n with integer coefficients not exceeding d 
decimal digits. Let P , ,  P2, $3, .. • , S, be a subresultant p.r.s, for P1 and P2 • Each 
coefficient of Sk is the determinant of a matrix of order 2(n - nk-~ q- 1), each 
clement of which is a coefficient of P,  or P~. By Hadamard's Theorem [5, pp. 78- 
79], the absolute value of this determinant does not exceed 102d("-"k-'+~). 
(2(n -- nk-1 --k 1) ),-~,_,+1. Thus the coefficients of Sk are at most (n -- nk_, --? 1). 
(2 d q- log,0 2(n  -- ~k-~ q- 1)) decimal digits long. If P , ,  P2, " "  , P ,  is the cor- 
responding primitive p.r.s., the same bound applies to the coefficients of P~, since 
S~ = a~P~ for some integer a~. As already noted, both the ALPAK algorithm and 
the primitive p.r.s, algorithm compute the primitive p.r.s., but in different ways. 
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TABLE 1. COMPUTING TI.~ES JN 5IINUTES 

Primitive Reduced 
EucIidear~ ALPAK p.r,s, f~.r.s, 

Degree algorithm algorithm algorithm algorithm 

Univariate  P o l y n o m i a l s  

5 .0034 .018 .009 .0043 
10 .94 .15 .064 .023 
15 .51 .22 .077 
20 1.19 .51 .21 
25 2.29 1.06 .43 
30 3.81 1.79 .78 
35 3.25 1.48 

Bivariate  P o l y n o m i a l s  

3 .30 .02 .015 
4 7.03 .35 .062 
5 4.29 .23 
6 .67 
7 1.81 

The ALPAK algorithm computes more g.c.d.'s of coefficients, presumably in an at- 
tempt to reduce the size of coefficients of intermediate polynomials computed be- 
tween successive terms of the primitive p.r.s. The experiments reported in Table 1 
strongly indicate that  this extra effort falls far short of being adequately compen- 
sated, particularly for multivariate polynomials. 

When P~ and P2 have a normal p.r.s., these same coefficient bounds apply to the 
reduced p.r.s, since then, by Corollary 1.3, the reduced p.r.s, and subresultant p.r.s. 
agree except for signs. For a nonnormal p.r.s, these coefficient bounds do not apply, 
and at present we have no theory to indicate tha t  the reduced p.r.s, algorithm 
woukl still be more efficient than the primitive p.r.s, algorithm. We have, however, 
accumulated considerable experimental evidence that ,  in practice, deviations from 
normality are both rare and small (say in the sense that  the expectation o f  
~-:~=~ ~i-l(& - 1) is small). For this reason, we have not at  this time programmed 
the algorithm provided by Theorem 2 for computing a subresultant p.r.s. 

While there is reason to believe that  nonnormal p.r.s.'s occur infrequently, the 
existence of nonnormal p.r.s.'s is an entirely different matter.  In  fact, if 
n ~ ,  'n~, . • • , nk  is any sequence of integers satisfying nl ~ n2 > na > • • • > nk ~ 0, 
there i s a p . r . s . P ~ , P ~ , . . . , P k s u c h t h a t d e g ( P ~ )  = n ~ f o r l  < i_< k. For, tet 
5~ = nl - ni+l and let Qi be any polynomial of degree ~_1(2 < i < k -- 1). Also, 
let P ~  and Pk be any polynomials of degrees nk_l and nk, respectively. By in- 
duction on i, define Pk_~ = Pk- i+lQk-~+l  + P ~ i + 2  ( f o r  2 < i < k -- 1). Assuming, 
by induction, that deg (P~-i+l) = nk_~+l and deg (Pk-~+2) = n~_~+~, we have 
deg ( P ~ i + l Q k - ~ + l )  = deg (Pk-~+l) + deg (Q~-~+I) = nk-i+l + ~_~ = n ~  > 
deg (P~-~+2), and hence deg (P~_~) = deg (P~_¢+,Q~_~+~) = nk_~ .  Hence 
P , ,  P.-, - • • , P~ is a p.r.s. A p.r.s, constructed in this way is artificial, however, in 
the sense that  the remainder equations a~P~ = P~. ,Q~+,  + b~P~+~ are all satisfied 
with a~ = b~ = 1. We do not know how to construct a p.r.s, with arbitrarilypre- 
scribed n~ for which this is not so. 
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Another theoretical problem relathig to p.r.s, calculation is the extent to which 
tile snbresultant p.r.s, can deviate from the corresponding primitive p.r.s., where 
Pi arid P~ are primitive. In this eomlection, note that since £(P1) and £(P~) are 
the only nonzero elements of the first column of the Sylvester matrix of P1 and P2, 
~my common divisor of £(P~) and £(P2) is a divisor of each subresultant of P1 and 
P2. Consideration of other columns leads to similar observations. Apart from ~his 
remark, this appears to be a question about which little is known. The ~vailable 
experimental evidence indicates, however, that the deviation is ordinarily so smali 
that the reduced p.r.s, algori~hm is faster. 

Since each pair of polynomials represented by Table 1 is relatively prime, one 
may ask whether a similar comparison would result for pairs which are no~ relatively 
prime. The answer is no. The data so far collected is too scanty to inehide, but. it 
indicates that as the g.e.d, increases in degree the primitive p.r.s, algorithm inn- 
proves relative to the reduced p.r.s, algorithm and may even be slightly faster in 
extreme cases. This slight advantage in these cases would seem to be far from ade- 
quate, however, to compensate the primitive p.r.s, algorithm for its relative in- 
efficiency in the other cases. 

The section of Table I applying to univariate polynomials displays welt the de- 
pendency of computing times on the degree n of the initial polynomials. It is possible 
to give an argument supporting the view that this dependency can be approximated 
by a polynomial in n of degree 4 (this applies to all except the Euclidean algorithm). 
Table 1 does no~, however, indicate the dependency of computing time on d, 
the number of decimal digits in the coefficients of the initial polynomials (for fixed 
n). This dependency can be approximated by a quadratic polynomial in d. For 
example, application of the reduced p.r.s, algorithm with n = 15 resulted in com- 
puting times of .077, .18 and .53 for d = 2, 4 and 8, respectively. 

Suppose one wishes to compute the g.c.d, of univariate polynomials, P~ and P2, 
with elements of R, the field of rational numbers, as coefficients. Since R is a field, 
there is essentially only one p.r.s. P~, P2, . . .  , Pk with elements P~ in e(R) .  
If one computes this p.r.s, in order to obtain the g.c.d, of P~ and P~, there are two 
eases according as one does or does not represent each rational number with rela- 
tively prime numerator and denominator. In the first ease the number of g.e.d.'s 
of integers computed is far larger than in the use of the ALPaK algorithm, and the 
computing time is correspondingly large. In the second ease, on the other hand, 
the integers clearly grow exponentially as in the Euclidean algorithm. It seems 
@ear, therefore, that the recommended procedure is to replace P1 and P2 with 
primitive associates, P~ a n d / 5 ,  with integer eoetticients and apply the reduced 
p.r.s, algorithm. A similar analysis applies to multivariate polynomiMs with ra- 
tional coefficients. 

Finally, a few remarks are added with regard to the reduced p.r.s, algorithm for 
computing the resultant R of polynomials P~ and P2 (with respect to the main 
variable). One computes the complete reduced p.r.s. P~, P~, . . .  ,Pk. Then, by 
Theorem 1, part (a), i R  is obtained by dividing p~k-~ by [~I~-~ c~-~(~'-~)], 
since Pk = c~. It is clear that the computing time is the same as in the reduced 
p.r.s, g.e.d, algorithm, except that in computing the resultant some additional 
time is required for the terminal division whenever the resultant is nonzero (P1 
and P~ have no common factor of positive degree in the main variable and the 
p.r.s, is nonnormal. 
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In this connection, however, it should be mentioned that  Williams [6] propos~,  
(mmslated into our terminology) computing the complete Euclidean p.r.s. P~, p~ 
• • • , Pk as a means of obtaining the "eliminant" of P1 and P~. I t  is not clear whet l~ r 
Williams realizes that  this "eliminant" may  differ essentially from the resultaa~c. 
In any case it seems desirable to point out that  his Theorem IV [6, p. 32] is false. 
Translated into our terminology, it states the following: Let P ~ ( x t ,  . . .  , x m ,  y ) ,  

P ~ ( x ~ ,  . . - ,  x,~, y), . . . ,  P k - ~ ( x x ,  . . . ,  x ,~ ,  y ) ,  P k ( x l ,  . . . ,  x , , )  be a complete 
Euclidean p.r.s, with respect to the main variable y. Let ax , . . .  , a,~, ¢ b,e 
complex numbers such that  P k ( a l ,  " " ,  am) = P ~ - l ( a l ,  " ' "  , a ,~ ,  ~ )  = Oar~ d 

P~(a~, . . . , a ~ , y )  ¢ 0. ThenP~(a~ ,  . . .  , a , , ,  ~ )  = P 2 ( a ~ ,  " .  , a , ~ , ~ )  = 0 .  

A simple counterexample is obtained by taking m = 1, P l ( x ,  y )  = x y  2 + 2y  + 1 ,  

P2 = x y  2 + y + x, a = 0andf~  = 1. T h e n P , ( x , y )  = x y  + x - x 2, k = 4 

and P4(x) = z ~ - 2 z  4 + 3 x  '~ - x 2. The erroneous proof apparent ly assumes t h a t  
P~(a~ , . . .  , a , ~ , y ) , P ~ ( a ~  , . . .  , a , ~ , y ) ,  . . .  , P ~ ( a ~  , . . .  , am)  i sap . r . s . , anassump_ 
tion which can be realized if we add the hypotheses A ~ ( a ~ ,  . . .  , a ~ )  ~ O, f ~ r  

2 < i < k - 1, where A ~ ( x ~ ,  • • • , xm)  is the leading coefficient of P ~ ( x ~ ,  • • • ,  x,~, y ) .  

This error, together with the impracticality of computing a Euclidean p.r.s., 
vitiates much of the content of [6]. 
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