Motivation

- We have seen transforms (between coord systems)
- But all that is in 3D
- We still need to make a 2D picture
- Project 3D to 2D. How do we do this?
- This lecture is about viewing transformations

What we’ve seen so far

- Transforms (translation, rotation, scale) as 4x4 homogeneous matrices
- Last row always 0 0 0 1. Last w component always 1
- For viewing (perspective), we will use that last row and w component no longer 1 (must divide by it)

Outline

- Orthographic projection (simpler)
- Perspective projection, basic idea
- Derivation of gluPerspective (handout: glFrustum)
- Brief discussion of nonlinear mapping in z

Not well covered in textbook chapter 7. We follow section 3.5 of real-time rendering most closely. Handouts on this will be given out.
Projections

- To lower dimensional space (here 3D -> 2D)
- Preserve straight lines
- Trivial example: Drop one coordinate (Orthographic)

Orthographic Projection

- Characteristic: Parallel lines remain parallel
- Useful for technical drawings etc.

Example

- Simply project onto xy plane, drop z coordinate

Orthographic Matrix

- First center cuboid by translating
- Then scale into unit cube

In general

- We have a cuboid that we want to map to the normalized or square cube from [-1, +1] in all axes
- We have parameters of cuboid (l,r ; t,b; n,f)

$$M = \begin{pmatrix}
\frac{2}{r-l} & 0 & 0 & 0 \\
0 & \frac{2}{t-b} & 0 & 0 \\
0 & 0 & \frac{2}{f-n} & 0 \\
0 & 0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
1 & 0 & 0 & -\frac{l+r}{2} \\
0 & 1 & 0 & -\frac{t+b}{2} \\
0 & 0 & 1 & -\frac{f+n}{2} \\
0 & 0 & 0 & 1
\end{pmatrix}$$
Caveats

- Looking down –z, f and n are negative (n > f)
- OpenGL convention: positive n, f, negate internally

Final Result

\[
M = \begin{pmatrix}
\frac{2}{r-l} & 0 & 0 & \frac{r+l}{r-l} \\
0 & \frac{2}{t-b} & 0 & \frac{r+b}{r-l} \\
0 & 0 & \frac{2}{f+n} & \frac{f+n}{f-n} \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

\[
glOrtho = \begin{pmatrix}
2 & 0 & 0 & \frac{-r+l}{r-l} \\
0 & 2 & 0 & \frac{-r+b}{r-l} \\
0 & 0 & 2 & \frac{-f+n}{f-n} \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

Outline

- Orthographic projection (simpler)
- Perspective projection, basic idea
- Derivation of gluPerspective (handout: glFrustum)
- Brief discussion of nonlinear mapping in z

Perspective Projection

- Most common computer graphics, art, visual system
- Further objects are smaller (size, inverse distance)
- Parallel lines not parallel; converge to single point

Overhead View of Our Screen

Looks like we’ve got some nice similar triangles here?

\[
\frac{x}{z} = \frac{x'}{d} \Rightarrow x' = \frac{d \cdot x}{z} \\
\frac{y}{z} = \frac{y'}{d} \Rightarrow y' = \frac{d \cdot y}{z}
\]

In Matrices

- Note negation of z coord (focal plane –d)
- (Only) last row affected (no longer 0 0 0 1)
- w coord will no longer = 1. Must divide at end

\[
P = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -\frac{1}{d} & 0
\end{pmatrix}
\]
Verify

\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -\frac{1}{d} & 0
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
z \\
1
\end{pmatrix}
= \begin{pmatrix}
\frac{d*x}{z} \\
\frac{d*y}{z} \\
\frac{-z}{d} \\
1
\end{pmatrix}
\]

Outline

- Orthographic projection (simpler)
- Perspective projection, basic idea
- Derivation of gluPerspective (handout: glFrustum)
- Brief discussion of nonlinear mapping in z

Remember projection tutorial

Viewing Frustum

Screen (Projection Plane)

gluPerspective

- gluPerspective(fovy, aspect, zNear > 0, zFar > 0)
- Fovy, aspect control fov in x, y directions
- zNear, zFar control viewing frustum
Overhead View of Our Screen

\[(x', y', d)\]

\[\theta = ? \quad d = ?\]

\[\theta = \frac{\text{fovy}}{2} \quad d = \cot \theta\]

In Matrices

- Simplest form:
 \[
P = \begin{bmatrix}
 \frac{1}{\text{aspect}} & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & -\frac{1}{d} \\
 \end{bmatrix}
\]

- Aspect ratio taken into account
- Homogeneous, simpler to multiply through by d
- Must map z vals based on near, far planes (not yet)

In Matrices

\[
P = \begin{bmatrix}
 \frac{1}{\text{aspect}} & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & -\frac{1}{d} \\
 \end{bmatrix}
\]

- A and B selected to map n and f to -1, +1 respectively

Z mapping derivation

\[
\begin{bmatrix}
 A & B \\
 -1 & 0 \\
\end{bmatrix} \begin{bmatrix}
 z \\
 1 \\
\end{bmatrix} = \begin{bmatrix}
 A(z+B) \\
 -z \\
\end{bmatrix} = -A \cdot \frac{B}{z}
\]

- Simultaneous equations?
 \[
 -A + \frac{B}{n} = -1 \quad A = \frac{f+n}{f-n}
 \]
 \[
 -A + \frac{B}{f} = +1 \quad B = \frac{2fn}{f-n}
 \]

Outline

- Orthographic projection (simpler)
- Perspective projection, basic idea
- Derivation of gluPerspective (handout: glFrustum)
- Brief discussion of nonlinear mapping in z

Mapping of Z is nonlinear

\[
\begin{bmatrix}
 A(z+B) \\
 -z \\
\end{bmatrix} = -A \cdot \frac{B}{z}
\]

- Many mappings proposed: all have nonlinearities
- Advantage: handles range of depths (10cm – 100m)
- Disadvantage: depth resolution not uniform
- More close to near plane, less further away
- Common mistake: set near = 0, far = infty. Don’t do this. Can’t set near = 0; lose depth resolution.
- We discuss this more in review session
Summary: The Whole Viewing Pipeline

- Model transformation
- Camera Transformation (gluLookAt)
- Perspective Transformation (gluPerspective)
- Viewport transformation
- Raster transformation

Slide courtesy Greg Humphreys