Today

- The Rendering Equation
- Radiosity Method
- Photon Mapping
- Ambient Occlusion
The light shining on x from x' is equal to:
- the emitted light from x' toward x, plus
- for each bit of surface in the scene, how much light shines from that bit onto x' and is reflected toward x, scaled appropriately.
The light shining on \(x \) from \(x' \) is equal to:
- the emitted light from \(x' \) toward \(x \), plus
- for each bit of surface in the scene, how much light shines from that bit onto \(x' \) and is reflected toward \(x \), scaled appropriately

\[
L_s(x, x') = \delta(x, x') \left[E(x, x') + \int_S \rho_{x'}(x, x'') L_s(x', x'') \frac{\cos(\theta') \cos(\theta'')}{||x' - x'||^2} dx'' \right]
\]
The Rendering Equation

\[L_s(\mathbf{x}, \mathbf{x}') = \delta(\mathbf{x}, \mathbf{x}') \left[E(\mathbf{x}, \mathbf{x}') + \int_S \rho_{\mathbf{x}'}(\mathbf{x}, \mathbf{x}'') L_s(\mathbf{x}', \mathbf{x}'') \frac{\cos(\theta') \cos(\theta'')}{||\mathbf{x}' - \mathbf{x}''||^2} d\mathbf{x}'' \right] \]
The Rendering Equation

\[L_s(x, x') = \delta(x, x') \left[E(x, x') + \int_S \rho_{x'}(x, x'')L_s(x', x'') \frac{\cos(\theta') \cos(\theta'')}{||x' - x'||^2} dx'' \right] \]

Light energy hitting \(x \) from \(x' \)
The Rendering Equation

\[L_s(x, x') = \delta(x, x') \left[E(x, x') + \int_S \rho(x', x'') L_s(x', x'') \frac{\cos(\theta') \cos(\theta'')}{||x' - x''||^2} \, dx'' \right] \]
The Rendering Equation

\[L_s(x, x') = \begin{cases} \delta(x, x') & \text{if } x \text{ see } x' \\ E(x, x') + \int_S \rho_x(x, x'') L_s(x', x'') \cos(\theta') \cos(\theta'') \frac{dx''}{||x' - x''||^2} \end{cases} \]
The Rendering Equation

\[
L_s(x, x') = \delta(x, x') \left[E(x, x') + \int_S \rho_{x'}(x, x'') L_s(x', x'') \frac{\cos(\theta')}{{||x' - x''||}^2} \right]
\]

\[
= \delta(x, x') \left[E(x, x') + \int_S \rho_{x'}(x, x'') L_s(x', x'') \frac{\cos(\theta')}{{||x' - x''||}^2} \right] dx''
\]
The Rendering Equation

\[L_s(x, x') = \delta(x, x') \left[E(x, x') + \int_S \rho_{x'}(x, x'') L_s(x', x'') \frac{\cos(\theta')}{|x' - x''|^2} \right] \]

Light emitted from x' toward x

\[L_s(x, x') = \delta(x, x') \left[E(x, x') + \int_S \rho_{x'}(x, x'') L_s(x', x'') \frac{\cos(\theta') \cos(\theta'')}{|x' - x''|^2} \right] \]

\[x \]
\[\hat{n'} \]
\[\Delta \]
\[\theta' \]
\[x' \]
\[\Delta \hat{n''} \]
\[\theta'' \]
\[x'' \]
The Rendering Equation

\[L_s(x, x') = \delta(x, x') \left[E(x, x') + \int_S \rho_{x'}(x, x'') L_s(x', x'') \frac{\cos(\theta') \cos(\theta'')}{||x' - x''||^2} \, dx'' \right] \]
The Rendering Equation

\[L_s(x, x') = \delta(x, x') \left[E(x, x') + \int_S \rho_{x'}(x, x'') L_s(x', x'') \frac{\cos(\theta')}{||x' - x''||^2} \right] \]

sum over every bit of surface in the scene
The Rendering Equation

\[L_s(x, x') = \delta(x, x') \left[E(x, x') + \int_S \rho_{x'}(x, x'') L_s(x', x'') \frac{\cos(\theta') \cos(\theta'')}{||x' - x''||^2} \, dx'' \right] \]
The Rendering Equation

\[L_s(x, x') = \delta(x, x') \left[E(x, x') + \int_S \rho(x') L_s(x', x'') \cos(\theta') \cos(\theta'') \frac{\left| x' - x'' \right|^2}{dx''} \right] \]

Light emitted from \(x'' \) toward \(x' \)
The Rendering Equation

\[L_s(x, x') = \delta(x, x') \left[E(x, x') + \int_S \rho_{x'}(x, x'') L_s(x', x'') \frac{\cos(\theta') \cos(\theta'')}{||x' - x''||^2} \, dx'' \right] \]
The Rendering Equation

\[L_s(x, x') = \delta(x, x') \left[E(x, x') + \int_S \rho_{x'}(x, x'') L_s(x', x'') \frac{\cos(\theta') \cos(\theta'')}{||x' - x''||^2} dx'' \right] \]

scaled down by the BRDF of \(x' \)
The Rendering Equation

\[
L_s(x, x') = \delta(x, x') \left[E(x, x') + \int_S \rho_{x'}(x, x'') L_s(x', x'') \frac{\cos(\theta') \cos(\theta'')}{||x' - x''||^2} dx'' \right]
\]
The Rendering Equation

\[L_s(x, x') = \delta(x, x') \left[E(x, x') + \int_S \rho_{x'}(x, x'') L_s(x', x'') \frac{\cos(\theta') \cos(\theta'')}{||x' - x''||^2} dx'' \right] \]

scaled down by distance and relative orientation ("form factor")
The Rendering Equation

\[L_s(x, x') = \delta(x, x') \left[E(x, x') + \int_S \rho_{x'}(x, x'')L_s(x', x'') \frac{\cos(\theta') \cos(\theta'')}{||x' - x''||^2} \, dx'' \right] \]
Radiosity

- Assume all materials are perfectly Lambertian (diffuse only, no specularities)
 - Removes all dependance on directions
 - Reduces dimensionality of lightfield
 - Allows a FEM solution (break up into chunks)
- Can also relax assumption slightly...
Early radiosity

from Hanrahan 2000
Assume Lambertian

\[
L_s(x, x') = \delta(x, x') \left[E(x, x') + \int_S \rho_{x'}(x, x'') L_s(x', x'') \frac{\cos(\theta') \cos(\theta'')}{|x' - x''|^2} dx'' \right]
\]

\[
L_s(x, x') = \delta(x, x') \left[E_{x'} + \int_S \rho_{x'} L_s(x', x'') \frac{\cos(\theta') \cos(\theta'')}{|x' - x''|^2} dx'' \right]
\]
Assume Lambertian

\[L_s(x, x') = \delta(x, x') \left[E(x, x') + \int_S \rho_{x'}(x, x'') L_s(x', x'') \frac{\cos(\theta') \cos(\theta'')}{||x' - x''||^2} dx'' \right] \]

\[L_s(x, x') = \delta(x, x') \left[E_{x'} + \int_S \rho_{x'} L_s(x', x'') \frac{\cos(\theta') \cos(\theta'')}{||x' - x''||^2} dx'' \right] \]

Only term dependent on \(x \)
Rewrite in Terms of Radiosity

\[L_s(x, x') = \delta(x, x') \left[E_{x'} + \int_S \rho_{x'} L_s(x', x'') \frac{\cos(\theta') \cos(\theta'')}{||x' - x''||^2} \, dx'' \right] \]

\[H_{x'} = E_{x'} + \rho_{x'} \int_S \delta(x', x'') \frac{H_{x''} \cos(\theta') \cos(\theta'')}{2\pi} \frac{1}{||x' - x''||^2} \, dx'' \]

Note: we changed defn of \(E \) here.
Discretize into Patches

Piece-wise constant patches

Example mesh for Cornell Box by Mark Schmelzenbach
Discretize into Patches

The Candlestick Theater,
Mark Mack Architects.
Discretize into Patches

The Candlestick Theater,
Mark Mack Architects.
Rewrite in Terms of Patches

\[
H_{x'} = E_{x'} + \rho_{x'} \int_S \delta(x', x'' \frac{H_{x''} \cos(\theta') \cos(\theta'')}{2\pi \|x' - x''\|^2} \, dx''
\]

\[
H_i = E_i + \rho_i \sum_j H_j \int_{S_j} \delta_{ij} \frac{\cos(\theta_i) \cos(\theta_j)}{2\pi \|c_i - x\|^2} \, dx
\]
Rewrite in Terms of Patches

\[H_{x'} = E_{x'} + \rho_{x'} \int_S \delta(x', x'') \frac{H_{x''} \cos(\theta') \cos(\theta'')}{2\pi \|x' - x''\|^2} \, dx'' \]

\[H_i = E_i + \rho_i \sum_j H_j \int_{S_j} \frac{\cos(\theta_i) \cos(\theta_j)}{2\pi \|c_i - x\|^2} \, dx \]

Form factor from \(j \) to \(i \), \(F_{ij} \)
Rewrite in Terms of Patches

\[H_{x'} = E_{x'} + \rho_{x'} \int_S \delta(x', x'') \frac{H_{x''} \cos(\theta') \cos(\theta'')}{2\pi \|x' - x''\|^2} \, dx'' \]

\[H_i = E_i + \rho_i \sum_j H_j \int_{S_j} \frac{\cos(\theta_i) \cos(\theta_j)}{2\pi \|c_i - x\|^2} \, dx \]

Form factor from \(j \) to \(i \), \(F_{ij} \)

Example of a rough approximation:

\[F_{ij} \approx \delta_{ij} \frac{\cos(\theta_i) \cos(\theta_j)}{2\pi \|c_i - c_j\|^2} A_j \]
Radiosity Method

- Given the E_i and ρ_i
- First compute F_{ij}
- Then solve
 \[H_i = E_i + \rho_i \sum_j H_j F_{ij} \]
- Comments:
 - The matrix A is typically very large
 - It is also sparse (why?)
 - Should be solved with an iterative method
 - e.g.: Jacobi or Gauss-Seidel
 - Solution is view independent

\[h = e + Ah \]
\[(I - A)h = e \]
Radiosity Method

- Given the light emitted and surface properties
- First compute F_{ij}, form factors between patches
- Then **solve a linear system to balance energy between all patches**

Comments:
 - The system is very large
 - It is also sparse (why?)
 - Should be solved with an iterative method
 - e.g.: Jacobi or Gauss-Seidel
 - **Solution is view independent**
Progressive Radiosity

- If magnitude of eigenvalues of $A<1$

\[(I - A)^{-1} = I + A + A^2 + A^3 + \cdots\]

- True for form-factor matrices

- Idea: let important sources of light energy emit first, maybe don’t even bother with dark things

- Use Gauss-Seidel-like iteration but reorder by priority

Southwell Relaxation
Progressive Radiosity

From dissertation "Efficient and predictive realistic image synthesis" by Karol Myszkowski
Each patch will have a constant color

- Smooth solution (e.g. average to vertices)
Other Things

- Each patch will have a constant color
 - Smooth solution (e.g. average to vertices)
- No specular reflection
 - Add Phong specular term or raytraced specular reflection
- Grid artifacts
 - Be clever with grid...
Hierarchical Radiosity

- Light smoothes with distance
 - Compare $1/h^2$ with $1/(h^2 + d^2)$ as h gets large
Hierarchical Radiosity

- **Light smoothes with distance**
 - Compare $1/h^2$ with $1/(h^2 + d^2)$ as h gets large

- **Group patches into hierarchy**
 - Far interactions use lower-res form factors
Computing Form Factors

Form factors have a geometric meaning

Images from SIGGRAPH 93 Education Slide Set by Stephen Spencer
Computing Form Factors

- Form factors have a geometric meaning
- "Hemicube" algorithm uses regular scan conversion

Images from SIGGRAPH 93 Education Slide Set by Stephen Spencer
Computing Form Factors

- Form factors have a geometric meaning.
- “Hemicube” algorithm uses regular scan conversion.
- Also computed by ray-based sampling.
- In practice, computing form factors is the bottleneck.
Photon Mapping

- Lights cast “photons” into environment
 - Cast in random directions
 - Trace into environment
 - Store records at intersections
Photon Mapping

- Lights cast “photons” into environment
 - Cast in random directions
 - Trace into environment
 - Store records at intersections
 - With KD-Trees...
Comparison

Ray Tracing

Ray Tracing w/ Photon Map

Catherine Bendebury and Jonathan Michaels
CS 184 Spring 2005
Photon Mapping

A ray traced image

Note:
Dark shadows
Unlit corners
Nice reflections

Image by Per Christensen
Photon Mapping

Raw photons

Note:
 Noisy
 Sparse

Image by Per Christensen
Photon Mapping

Interpolated Photons

Note:
Still noisy
Biased

Image by Per Christensen
Photon Mapping

Interpolated Photons
(multiplied by diffuse)

Note:
Still noisy
Biased

Image by Per Christensen
Photon Mapping

- **Final Gather**
 - Ray trace scene
 - Direct and specular rays as normal
 - Diffuse rays traced into photon map
 - *Diffuse reflection smoothes noise*
Photon Mapping

Final Image

Note:
Not noisy
Nice lighting
Reflections
May still be biased

Final gather often bottleneck...

Image by Per Christensen
Ambient Occlusion

- A “hack” to create more realistic ambient illumination cheaply
- Assume light from everywhere is partially blocked by local objects
 - At a point on the surface cast rays at random
 - Ambient term is proportional to percent of rays that hit nothing
 - Weight average by cosine of angle with normal
 - Take into account how far before occluded
 Ambient Occlusion

[Diagram showing rays indicating ambient occlusion]
Ambient Occlusion

Diffuse Only Ambient Occlusion Combined
Ambient Occlusion

nVidia Gelato Demo Image