Today

- Clipping
 - Clipping to view volume
 - Clipping arbitrary polygons
- Hidden Surface Removal
 - Z-Buffer
 - BSP Trees
 - Others
Clipping

- Stuff outside view volume should not be drawn
 - Too close: obscures view

Too far:
- Complexity
- Z-buffer problems

Too high/low/right/left:
- Memory errors
- Broken algorithms
- Complexity
Clipping Line to Line/Plane

Line segment to be clipped
\[\mathbf{x}(t) = \mathbf{a} + t(\mathbf{b} - \mathbf{a}) \]

Line/plane that clips it
\[\hat{\mathbf{n}} \cdot \mathbf{x} - \hat{\mathbf{n}} \cdot \mathbf{r} = 0 \]

Clipping Line to Line/Plane

Line segment to be clipped
\[\mathbf{x}(t) = \mathbf{a} + t(\mathbf{b} - \mathbf{a}) \]

Line/plane that clips it
\[\hat{\mathbf{n}} \cdot \mathbf{x} - f = 0 \]
\[\hat{\mathbf{n}} \cdot (\mathbf{a} + t(\mathbf{b} - \mathbf{a})) - f = 0 \]
\[\hat{\mathbf{n}} \cdot \mathbf{a} + t(\hat{\mathbf{n}} \cdot (\mathbf{b} - \mathbf{a})) - f = 0 \]

\[t = \frac{f - \hat{\mathbf{n}} \cdot \mathbf{a}}{\hat{\mathbf{n}} \cdot \mathbf{d}} \]
Clipping Line to Line/Plane

- Segment may be on one side
 \[t \not\in [0...1] \]

- Lines may be parallel
 \[\hat{n} \cdot d = 0 \]

\[\| \hat{n} \cdot d \| \leq \epsilon \] (Recall comments about numerical issues)

Polygon Clip to Convex Domain

- Convex domain defined by collection of planes (or lines or hyper-planes)
- Planes have outward pointing normals
- Clip against each plane in turn
- Check for early/trivial rejection
Polygon Clip to Convex Domain

Inside
Outside
s
p
Output p

Inside
Outside
s
i
p
Output i

Inside
Outside
p
s
No output

Inside
Outside
p
i
s
Output i and p
Polygon Clip to Convex Domain

- Sutherland-Hodgman algorithm
 - Basically edge walking
- Clipping done often... should be efficient
 - Liang-Barsky parametric space algorithm
 - See text for clipping in 4D homogenized coordinates

General Polygon Clipping

\[A \setminus B \]

\[B \setminus A \]

\[A \cup B \]

\[A \cap B \]
General Polygon Clipping

- Weiler Algorithm
 - Double edges

Hidden Surface Removal
Z-Buffers

- Add extra depth channel to image
- Write Z values when writing pixels
- Test Z values before writing

Benefits
- Easy to implement
- Works for most any geometric primitive
- Parallel operation in hardware

Limitations
- Quantization and aliasing artifacts
- Overfill
- Transparency does not work well
Z-Buffers

- Transparency requires partial sorting:

<table>
<thead>
<tr>
<th>Partially transparent</th>
<th>3rd</th>
<th>Front</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opaque</td>
<td>2nd</td>
<td></td>
</tr>
<tr>
<td>Opaque</td>
<td>1st</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Partially transparent</th>
<th>1st</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opaque</td>
<td>3rd</td>
</tr>
<tr>
<td>Opaque</td>
<td>2nd</td>
</tr>
</tbody>
</table>

Good
Not Good

Z-Buffers

Recall depth-value distortions.

It's a feature...
More resolution near viewer
Best use of limited precision
A-Buffers

- Store sorted list of “fragments” at each pixel
- Draw all opaque stuff first then transparent
- Stuff behind full opacity gets ignored
- Nice for antialiasing...

Scan-line Algorithm

- Assume polygons don’t intersect
- Each time an edge is crossed determine who’s on top
Painter’s Algorithm

- Sort Polygons Front-to-Back
 - Draw in order
 - Back-to-Front works also, but wasteful
- How to sort quickly?
- Intersecting polygons?
- Cycles?

BSP-Trees

- Binary Space Partition Trees
 - Split space along planes
 - Allows fast queries of some spatial relations
- Simple construction algorithm
 - Select a plane as sub-tree root
 - Everything on one side to one child
 - Everything on the other side to other child
 - Use random polygon for splitting plane
BSP-Trees

BSP-Trees
BSP-Trees

BSP-Trees
Visibility Traversal

- Variation of in-order-traversal
 - Child one
 - Sub-tree root
 - Child two
- Select “child one” based on location of viewpoint
 - Child one on same side of sub-tree root as viewpoint

BSP-Trees

$c_1 : b : d : a : f : e_1 : c_2 : g : e_2$
BSP-Trees

Suggested Reading

- Fundamentals of Computer Graphics by Pete Shirley
 - Chapter 7
 - Clipping in chapter 11.1 and 11.2