Today

- Transformations in 3D
- Rotations
 - Matrices
 - Euler angles
 - Exponential maps
 - Quaternions
- SIGGRAPH 2005 submissions
- Note: assignment #2 on Wednesday
3D Transformations

- Generally, the extension from 2D to 3D is straightforward
 - Vectors get longer by one
 - Matrices get extra column and row
 - SVD still works the same way
 - Scale, Translation, and Shear all basically the same
- Rotations get interesting

Translations

For 2D:
\[
\tilde{A} = \begin{bmatrix}
1 & 0 & t_x \\
0 & 1 & t_y \\
0 & 0 & 1
\end{bmatrix}
\]

For 3D:
\[
\tilde{A} = \begin{bmatrix}
1 & 0 & 0 & t_x \\
0 & 1 & 0 & t_y \\
0 & 0 & 1 & t_z \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
Scales

\[\tilde{A} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{For 2D} \]

\[\tilde{A} = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{For 3D} \]

(Axis-aligned!)

Shears

\[\tilde{A} = \begin{bmatrix} 1 & h_{xy} & 0 \\ h_{yx} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{For 2D} \]

\[\tilde{A} = \begin{bmatrix} 1 & h_{xy} & h_{xz} & 0 \\ h_{yx} & 1 & h_{yz} & 0 \\ h_{zx} & h_{zy} & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{For 3D} \]

(Axis-aligned!)
Shears

\[\tilde{A} = \begin{bmatrix}
1 & h_{xy} & h_{xz} & 0 \\
h_{yx} & 1 & h_{yz} & 0 \\
h_{zx} & h_{zy} & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix} \]

Shears \(y \) into \(x \)

Rotations

- 3D Rotations fundamentally more complex than in 2D
 - 2D: amount of rotation
 - 3D: amount and axis of rotation
Rotations

- Rotations still orthonormal
- $\det(R) = 1 \neq -1$
- Preserve lengths and distance to origin
- 3D rotations DO NOT COMMUTE!
- Right-hand rule
- Unique matrices

Axis-aligned 3D Rotations

- 2D rotations implicitly rotate about a third out of plane axis
Axis-aligned 3D Rotations

- 2D rotations implicitly rotate about a third out of plane axis

\[R = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \]

\[R = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \]

Note: looks same as \(\tilde{R} \)

Axis-aligned 3D Rotations

\[R_x = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix} \]

\[R_y = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{bmatrix} \]

\[R_z = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \]

"Z is in your face"
Axis-aligned 3D Rotations

\[R_x = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix} \]

\[R_y = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{bmatrix} \]

\[R_z = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \]

Also right handed “Zup”

Also known as “direction-cosine” matrices
Arbitrary Rotations

- Can be built from axis-aligned matrices:

 \[R = R_{\hat{z}} \cdot R_{\hat{y}} \cdot R_{\hat{x}} \]

- Result due to Euler... hence called Euler Angles
- Easy to store in vector
- \(R = \text{rot}(x, y, z) \)
- But NOT a vector.

\[R = R_{\hat{z}} \cdot R_{\hat{y}} \cdot R_{\hat{x}} \]
Arbitrary Rotations

- Allows tumbling
- Euler angles are non-unique
- Gimbal-lock
- Moving -vs- fixed axes
 - Reverse of each other

Exponential Maps

- Direct representation of arbitrary rotation
- AKA: axis-angle, angular displacement vector
- Rotate θ degrees about some axis
- Encode θ by length of vector
 \[\theta = |\mathbf{r}| \]
Exponential Maps

- Given vector \mathbf{r}, how to get matrix \mathbf{R}

- Method from text:
 1. rotate about x axis to put \mathbf{r} into the x-y plane
 2. rotate about z axis align \mathbf{r} with the x axis
 3. rotate θ degrees about x axis
 4. undo #2 and then #1
 5. composite together

Exponential Maps

- Vector expressing a point has two parts
 - \mathbf{X}_\parallel does not change
 - \mathbf{X}_\perp rotates like a 2D point
Exponential Maps

$x' = x_{||} + x_{\perp} \sin(\theta) - x_{\perp} \cos(\theta)$

Rodriguez Formula

$x' = \hat{r} (\hat{r} \cdot x) + \sin(\theta) (\hat{r} \times x) - \cos(\theta) (\hat{r} \times (\hat{r} \times x))$

Linear in x

Actually a minor variation ...
Exponential Maps

- Building the matrix

\[x' = (\hat{\mathbf{r}}\hat{\mathbf{r}}^t) + \sin(\theta)(\hat{\mathbf{r}} \times) - \cos(\theta)(\hat{\mathbf{r}} \times)(\hat{\mathbf{r}} \times)) x \]

\[(\hat{\mathbf{r}} \times) = \begin{bmatrix} 0 & -\hat{r}_z & \hat{r}_y \\ \hat{r}_z & 0 & -\hat{r}_x \\ -\hat{r}_y & \hat{r}_x & 0 \end{bmatrix} \]

Antisymmetric matrix
\((a \times) b = a \times b \)
Easy to verify by expansion

Exponential Maps

- Allows tumbling
- No gimbal-lock!
- Orientations are space within \(\pi \)-radius ball
- Nearly unique representation
- Singularities on shells at \(2\pi \)
- Nice for interpolation
Exponential Maps

- Why exponential?
- Recall series expansion of e^x

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

Exponential Maps

- Why exponential?
- Recall series expansion of e^x
- Euler: what happens if you put in $i\theta$ for x

$$e^{i\theta} = 1 + \frac{i\theta}{1!} + \frac{-\theta^2}{2!} + \frac{-i\theta^3}{3!} + \frac{\theta^4}{4!} + \cdots$$

$$= \left(1 + \frac{-\theta^2}{2!} + \frac{\theta^4}{4!} + \cdots\right) + i \left(\frac{\theta}{1!} + \frac{-\theta^3}{3!} + \cdots\right)$$

$$= \cos(\theta) + i \sin(\theta)$$
Exponential Maps

- Why exponential?

\[
e^{(\hat{r} \times) \theta} = \mathbf{I} + \frac{(\hat{r} \times) \theta}{1!} + \frac{(\hat{r} \times)^2 \theta^2}{2!} + \frac{(\hat{r} \times)^3 \theta^3}{3!} + \frac{(\hat{r} \times)^4 \theta^4}{4!} + \cdots
\]

But notice that: \((\hat{r} \times)^3 = -\hat{r} \times\)

\[
e^{(\hat{r} \times) \theta} = \mathbf{I} + \frac{(\hat{r} \times) \theta}{1!} + \frac{(\hat{r} \times)^2 \theta^2}{2!} - \frac{(\hat{r} \times) \theta^3}{3!} - \frac{(\hat{r} \times)^2 \theta^4}{4!} + \cdots
\]

\[
e^{(\hat{r} \times) \theta} = (\hat{r} \times) \left(\frac{\theta}{1!} - \frac{\theta^3}{3!} + \cdots \right) + \mathbf{I} + (\hat{r} \times)^2 \left(\frac{\theta^2}{2!} - \frac{\theta^4}{4!} + \cdots \right)
\]

\[
e^{(\hat{r} \times) \theta} = (\hat{r} \times) \sin(\theta) + \mathbf{I} + (\hat{r} \times)^2 (1 - \cos(\theta))
\]
Quaternions

- More popular than exponential maps
- Natural extension of $e^{i\theta} = \cos(\theta) + i\sin(\theta)$
- Due to Hamilton (1843)
 - Interesting history
 - Involves “hermaphroditic monsters”

\[i^2 = j^2 = k^2 = -1 \]

Q = (z₁, z₂, z₃, s) = (z, s)
Q = iz₁ + jz₂ + kz₃ + s

ij = k ji = −k
jk = i k j = −i
ki = j ik = −j
Quaternions

- Multiplication natural consequence of defn.
 \[q \cdot p = (z_q s_p + z_p s_q + z_p \times z_q, s_p s_q - z_p \cdot z_q) \]

- Conjugate
 \[q^* = (-z, s) \]

- Magnitude
 \[||q||^2 = z \cdot z + s^2 = q \cdot q^* \]

Quaternions

- Vectors as quaternions
 \[v = (v, 0) \]

- Rotations as quaternions
 \[r = (\hat{r} \sin \frac{\theta}{2}, \cos \frac{\theta}{2}) \]

- Rotating a vector
 \[x' = r \cdot x \cdot r^* \]
 \[\text{Compare to Exp. Map} \]

- Composing rotations
 \[r = r_1 \cdot r_2 \]
Quaternions

- No tumbling
- No gimbal-lock
- Orientations are “double unique”
- Surface of a 3-sphere in 4D $\|r\| = 1$
- Nice for interpolation

Rotation Matrices

- Eigen system
 - One real eigenvalue
 - Real axis is axis of rotation
 - Imaginary values are 2D rotation as complex number
- Logarithmic formula
 $$(\hat{r} \times) = \ln(R) = \frac{\theta}{2 \sin \theta} (R - R^\top)$$
 $$\theta = \cos^{-1} \left(\frac{\text{Tr}(R) - 1}{2} \right)$$
 Similar formulae as for exponential...
Rotation Matrices

Consider:

\[
\mathbf{RI} = \begin{bmatrix}
 r_{xx} & r_{xy} & r_{xz} \\
 r_{yx} & r_{yy} & r_{yz} \\
 r_{zx} & r_{zy} & r_{zz}
\end{bmatrix} \begin{bmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1
\end{bmatrix}
\]

- Columns are coordinate axes after transformation (true for general matrices)
- Rows are original axes in original system (not true for general matrices)

Suggested Reading

- Fundamentals of Computer Graphics by Pete Shirley
 - Chapter 5 (still)
 - Rotation stuff in the book is a bit weak... luckily you have these nice slides!