Assignment 1

Question 1: Two vectors in the plane, \(\mathbf{i} \) and \(\mathbf{j} \), have the following properties (\(\mathbf{i} \cdot \mathbf{i} \) means the dot product between \(\mathbf{i} \) and \(\mathbf{i} \)):
\[\mathbf{i} \cdot \mathbf{i} = 1, \quad \mathbf{i} \cdot \mathbf{j} = 0, \quad \mathbf{j} \cdot \mathbf{j} = 1. \]

1. Is there a vector \(\mathbf{k} \), that is not equal to \(\mathbf{i} \), such that:
\[\mathbf{k} \cdot \mathbf{k} = 1, \quad \mathbf{k} \cdot \mathbf{j} = 0? \] What is it? Are there many vectors with these properties?

2. Is there a vector \(\mathbf{k} \) such that:
\[\mathbf{k} \cdot \mathbf{k} = 1, \quad \mathbf{k} \cdot \mathbf{j} = 0, \quad \mathbf{k} \cdot \mathbf{i} = 0? \] Why not?

3. If \(\mathbf{i} \) and \(\mathbf{j} \) were vectors in 3D, how would the answers to the above questions change?

Question 2: For three points on the plane, \((x_1, y_1) \), \((x_2, y_2) \) and \((x_3, y_3) \) show that the determinant
\[
\begin{vmatrix}
 x_1 & x_2 & x_3 \\
 y_1 & y_2 & y_3 \\
 1 & 1 & 1
\end{vmatrix}
\]

is proportional to the area of the triangle whose corners are the three points. If these points lie on a straight line, what is the value of the determinant? Does this give a useful test to tell whether three points lie on a line? Why do you think so?

Question 3: The equation of a line in the plane is \(ax + by + c = 0 \). Given two points on the plane, show how to find the values of \(a \), \(b \), \(c \) for the line that passes through those two points. You may find the answer to question 2 useful here.

Question 4: Let \(\mathbf{e}_1 = (1, 0, 0) \), \(\mathbf{e}_2 = (0, 1, 0) \), \(\mathbf{e}_3 = (0, 0, 1) \). Show that if \(\{i, j, k\} \) is \{1, 2, 3\}, \{2, 3, 1\}, or \{3, 1, 2\}, then \(\mathbf{e}_i \times \mathbf{e}_j = \mathbf{e}_k \), where \(X \) is the cross product. Now show that if \(\{i, j, k\} \) is \{1, 3, 2\}, \{3, 2, 1\} or \{2, 1, 3\}, then \(\mathbf{e}_i \times \mathbf{e}_j = -\mathbf{e}_k \).
Question 5: For four points in space \((x_1, y_1, z_1), (x_2, y_2, z_2), (x_3, y_3, z_3), (x_4, y_4, z_4)\) show that the determinant
\[
\begin{vmatrix}
 x_1 & x_2 & x_3 & x_4 \\
 y_1 & y_2 & y_3 & y_4 \\
 z_1 & z_2 & z_3 & z_4 \\
 1 & 1 & 1 & 1
\end{vmatrix}
\]
is proportional to the volume of the prism whose corners are the four points. If these points lie on a plane, what is the value of the determinant? Does this give a useful test to tell whether four given points lie on a plane? Why do you think so?

Question 6: The equation of a plane in space is \(ax + by + cz + d = 0\). Given three points in space, show how to find the values of \(a, b, c, d\) for the plane that passes through those three points. You may find the answer to question 4 useful here.

Question 7: Let \(p_0, p_1, p_2\) be three distinct points in space. Now consider the cross product \(n = (p_0 - p_1) \times (p_0 - p_2)\). What does this vector mean geometrically? Let \(p\) be any point on the plane formed by \(p_0, p_1\) and \(p_2\); what is the geometric relationship between \(n\) and \(p - p_0\) (look at the dot product)? Show that, if \(p = (x, y, z)\) the equation of the plane must be \(n \cdot (p - p_0) = 0\).

Question 8: Suppose that \(A\) is a square matrix, and its inverse and transpose exist, and are equal; a matrix with these properties is called an **orthonormal** matrix. Show that, for any angle \(\theta\), the matrix \(M(\theta)\), defined by the array below, is orthonormal.
\[
\begin{pmatrix}
 \cos \theta & \sin \theta \\
 -\sin \theta & \cos \theta
\end{pmatrix}
\]
Show also that \(M(\theta_1 + \theta_2) = M(\theta_1)M(\theta_2)\); use this to argue that the inverse of \(M(\theta)\) is \(M(-\theta)\). Finally, for the point \(p = (0, 1)\), what geometrical figure is given by taking the points given by \(M(\theta)p\) for every possible value of \(\theta\)?

Question 9: You are given four vectors in the plane, \(x_1\) and \(x_2\), \(b_1\) and \(b_2\), and you are told that there is a matrix \(M\) such that \(Mx_1 = b_1\) and \(Mx_2 = b_2\). Now if you are given a vector \(x_3\), how do you determine \(Mx_3\)? (hint: show how to find out what \(M\) is from the data, and then apply it to \(x_3\)).

Question 10: Write down the parametric equation of the points on a line that passes through two points in space, \(p_1\) and \(p_2\); now write down the parametric equation of the points on a plane that contains these two points and a third point, \(p_3\). Show how to use these parametric equations and some inequalities on the parameters to specify (a) all the points on the line that lie between \(p_1\) and \(p_2\) and (b) all the points on the triangle whose vertices are \(p_1, p_2\) and \(p_3\).

Question 11: \(M\) is a symmetric real 2x2 matrix. It has two eigenvalues, \(\lambda_0\) and \(\lambda_1\).

- If both eigenvalues are positive, show that, for any 2D vector \(x\), \(x^T M x \leq (\max(\lambda_0, \lambda_1))x^T x\).
- If one eigenvalue is positive and one is negative, show that there is some vector \(x\) such that \(x^T M x = 0\).
- If one eigenvalue is zero, show that there is some vector \(x \neq 0\) such that \(Mx = 0\).
- A matrix \(M\) is **positive definite** if, for any vector \(x\), \(x^T M x > 0\). Assume that \(M\) is symmetric, real, and positive definite. What can you say about its eigenvalues?
Question 12: \(M \) is a 2x2 matrix.

- Show that the eigenvalues of \(M \) are the roots of the equation \(\lambda^2 - \text{trace}(M)\lambda + \det(M) = 0 \).

Something Optional: +5 pts

If you decide to continue into graduate school, you will most likely have to write papers about your graduate research work. If these papers contain any math, you will need to set your equations using a tool like LaTeX, MS Word's Equation Editor, or Mathematica.

If you use one of these tools (or something similar) to write up the solutions to at least 4 questions, you will get two extra credit points on this assignment. If you do the entire assignment with the tool you will get a total of five points extra.

My personal preference is for LaTeX because it produces the nicest looking output. LaTeX's downside is that it is hard to learn, although once learnt it is fast to use. Mathematica and Word both have GUI interfaces, so they are easy to learn but slower to use.

Honestly, five points will not make much of a difference in your grade: So only do this extra bit if you are interested in learning one of these tools and have the time available.