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Announcement 
• Final Project Poster Session
• Thursday, Friday December 8th, 2:30-5:00 pm
• Poster stands and tables provided
• Laptop videos or demos are highly recommended
• Limited AC outlets

• Final project reports 

• Hardcopy due to me by December 15th 5pm.
• No time for late submission!

• Final exam
• Tuesday, December 13th, 8:00 - 11:00 am
• 10 Evans
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Today

• Rigid-body dynamics
• Articulated systems
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A Rigid Body

3

A solid object that does not deform
Consists of infinite number of infinitesimal mass points... 

...that share a single RB transformation

Rotation + Translation (no shear or scale)

Rotation and translation vary over time

Limit of deformable object as 

x

W = R · x

L + t

ks!1



5

A Rigid Body

In 2D:  

In 3D:  

Translation 2 “directions”
Rotation 1 “direction”

Translation 3 “directions”
Rotation 3 “direction”

3 DOF Total

6 DOF Total

2D is boring... we’ll stick to 3D from now on...

Translation and rotation are decoupled
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Translational Motion

v
Just like a point mass:

ṗ = v

v̇ = a = f/m

Note: Recall discussion on integration...
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Rotational Motion

v

!
Rotation gets a bit odd, as well 
see...

Rotational “position” 
  Rotation matrix
  Exponential map
  Quaternions

Rotational velocity
  Stored as a vector
  (Also called angular velocity...)
  Measured in radians / second
 

R

!
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Rotational Motion

v

! Kinetic energy due to rotation:

“Sum energy (from rotation) over 
all points in the object”

E =

Z

⌦

1

2
⇢ ẋ · ẋ du

E =

Z

⌦

1

2
⇢([!⇥]x) · ([!⇥]x) du
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Rotational Motion

v

!
Angular momentum
  Similar to linear momentum
  Can be derived from rotational

 energy

H

Figure is a lie if this 
really is a sphere...

H =

Z

⌦
⇢ x⇥ ẋ du

H =

Z

⌦
⇢ x⇥ (! ⇥ x) du

H =

✓Z

⌦
· · · du

◆
!

H = I!“Inertia Tensor” not 
identity matrix... 
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H =

Z

⌦
⇢ x⇥ (! ⇥ x) du

H =

✓Z

⌦
· · · du

◆
!

H = I!“Inertia Tensor” not 
identity matrix... 



9

Rotational Motion
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Inertia Tensor

I=
Z

Ω
ρ

2

4
y2+ z2 �xy �xz
�xy z2+ x2 �yz
�xz �yz x2+ y2

3

5du

See example for simple shapes at
  http://scienceworld.wolfram.com/physics/MomentofInertia.html

Can also be computed from polygon models by transforming 
volume integral to a surface one.  
See paper/code by Brian Mirtich. 
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Ḣ
W

= ṘILR T!W + RILṘ
T
!W + RILR T↵W

Rotational Motion

v

!
H

Figure is a lie if this really is a sphere...

HW = IW!W

Conservation or momentum:

Ḣ
W = 0

Ṙ = ! ⇥R

HW = RILRT!W

↵W = (RILRT)�1(�!W ⇥HW )

In other words, things wobble when they 
rotate.
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Rotational Motion

v

!
H

Figure is a lie if this really is a sphere...

Take care when integrating rotations, they 
need to stay rotations.

↵W = (RILRT)�1 �
(�!W ⇥HW ) + ⌧

�

⌧ = f ⇥ x

Ṙ = [!⇥]R

!̇ = ↵
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Couples
• A force / torque pair is a couple
• Also a wrench 

•Many couples are equivalent

⌧

f

⌧ f
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Constraints
• Simples method is to use spring attachments
• Basically a penalty method

• Spring strength required to get good results may be unreasonably high
• There are ways to cheat in some contexts...
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Constraints

• Articulation constraints
• Spring trick is an example of a full coordinate method
• Better constraint methods exist

• Reduced coordinate methods use DOFs in kinematic skeleton for 
simulation
• Much more complex to explain

• Collisions
• Penalty methods can also be used for collisions
• Again, better constraint methods exist
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Suggested Reading

•Brian Mirtich,  ``Fast and Accurate Computation of Polyhedral Mass Properties,'' Journal of Graphics Tools, volume 1, number 2, 1996.   
http://www.cs.berkeley.edu/~jfc/mirtich/papers/volInt.ps

•Brian Mirtich and John Canny,  ``Impulse-based Simulation of Rigid Bodies,''  in  Proceedings of 1995 Symposium on Interactive 3D 
Graphics,  April 1995.  http://www.cs.berkeley.edu/~jfc/mirtich/papers/ibsrb.ps

•D. Baraff. Linear-time dynamics using Lagrange multipliers. Computer Graphics Proceedings, Annual Conference Series: 137-146, 1996.  
http://www.pixar.com/companyinfo/research/deb/sig96.pdf

•D. Baraff. Fast contact force computation for nonpenetrating rigid bodies. Computer Graphics Proceedings, Annual Conference Series: 
23-34, 1994.  http://www.pixar.com/companyinfo/research/deb/sig94.pdf


