

Lecture #23: Rigid Body Dynamics

Prof. James O'Brien University of California, Berkeley

V2011-F-23-1.0

| Announcement                                                                                                                                                                                                                        |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <ul> <li>Final Project Poster Session</li> <li>Thursday, Friday December 8th, 2:30-5:00 pm</li> <li>Poster stands and tables provided</li> <li>Laptop videos or demos are highly recommended</li> <li>Limited AC outlets</li> </ul> |  |
| • Final project reports                                                                                                                                                                                                             |  |
| <ul> <li>Hardcopy due to me by December 15th 5pm.</li> <li>No time for late submission!</li> </ul>                                                                                                                                  |  |
| • Final exam                                                                                                                                                                                                                        |  |
| <ul> <li>Tuesday, December 13th, 8:00 - 11:00 am</li> <li>10 Evans</li> </ul>                                                                                                                                                       |  |



31

## A Rigid Body

- A solid object that does not deform
- Consists of infinite number of infinitesimal mass points...
- ...that share a single RB transformation
  - $\circ$  Rotation + Translation (no shear or scale)

$$x^W = R \cdot x^L + t$$

- $\,\circ\,$  Rotation and translation vary over time
- $\circ$  Limit of deformable object as  $k_{\mathcal{S}} 
  ightarrow \infty$





#### Rotational Motion



# 







Inertia Tensor  $I = \int_{\Omega} \rho \begin{bmatrix} y^2 + z^2 & -xy & -xz \\ -xy & z^2 + x^2 & -yz \\ -xz & -yz & x^2 + y^2 \end{bmatrix} du$ See example for simple shapes at http://scienceworld.wolfram.com/physics/MomentofInertia.html
Can also be computed from polygon models by transforming volume integral to a surface one. See paper/code by Brian Mirtich.





## Couples

- A force / torque pair is a couple
  - Also a wrench
- Many couples are equivalent





#### Constraints

- Simples method is to use spring attachments
  - Basically a penalty method



14

- Spring strength required to get good results may be unreasonably high
  - There are ways to cheat in some contexts...

#### Constraints

- Articulation constraints
  - Spring trick is an example of a full coordinate method
    - Better constraint methods exist
  - Reduced coordinate methods use DOFs in kinematic skeleton for simulation
    - Much more complex to explain
- Collisions
  - Penalty methods can also be used for collisions
  - Again, better constraint methods exist

| Suggested Reading                                                                                                                                                                                                                    |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                                                                                      |  |
|                                                                                                                                                                                                                                      |  |
|                                                                                                                                                                                                                                      |  |
|                                                                                                                                                                                                                                      |  |
| Brian Mirtich, ``Fast and Accurate Computation of Polyhedral Mass Properties,'' Journal of Graphics Tools, volume 1, number 2, 1996.     http://www.cs.berkeley.edu/~jfc/mirtich/papers/vollnt.ps                                    |  |
| <ul> <li>Brian Mirtich and John Canny, ``Impulse-based Simulation of Rigid Bodies,'' in Proceedings of 1995 Symposium on Interactive 3D<br/>Graphics, April 1995. http://www.cs.berkeley.edu/~jfc/mirtich/papers/ibsrb.ps</li> </ul> |  |
| <ul> <li>D. Baraff, Linear-time dynamics using Lagrange multipliers. Computer Graphics Proceedings, Annual Conference Series: 137-146, 1996.<br/>http://www.pixar.com/companyinfo/research/deb/sig96.pdf</li> </ul>                  |  |
| <ul> <li>D. Baraff, Fast contact force computation for nonpenetrating rigid bodies. Computer Graphics Proceedings, Annual Conference Series:<br/>23-34, 1994. http://www.pixar.com/companyinfo/research/deb/sig94.pdf</li> </ul>     |  |
|                                                                                                                                                                                                                                      |  |
|                                                                                                                                                                                                                                      |  |
| 16                                                                                                                                                                                                                                   |  |

15