| CC 104 Computer Craphics                                  |  |
|-----------------------------------------------------------|--|
| CS-184: Computer Graphics                                 |  |
|                                                           |  |
|                                                           |  |
| Lasting #20 Mation Casting                                |  |
| Lecture #20: Motion Capture                               |  |
|                                                           |  |
| Prof. James O'Brien<br>University of California. Berkeley |  |
| V2011-5-2010                                              |  |
|                                                           |  |
|                                                           |  |







| What types of objects? |   |  |
|------------------------|---|--|
|                        |   |  |
| • Human, whole body    |   |  |
| Portions of body       |   |  |
| Facial animation       |   |  |
| Animais     Puppets    |   |  |
| • Other objects        |   |  |
|                        |   |  |
|                        | 5 |  |

# Capture Equipment

### Passive Optical

- Reflective markers
- IR (typically) illumination
- Special cameras
  - Fast, high res., filters
- Triangulate for positions



Images from Motion Analysis







# Capture Equipment

### Active Optical

- Similar to passive but uses LEDs
- Blink IDs, no marker swap
- Number of markers trades off w/ frame rate





Phoenix Technology

Phase Space



| Capture Equipment                               |  |
|-------------------------------------------------|--|
|                                                 |  |
| Electromagnetic Advantages                      |  |
| • 6 DOF data                                    |  |
| No occlusions                                   |  |
| Less post processing                            |  |
| Cheaper than optical                            |  |
| • Disadvantages                                 |  |
| • Cables                                        |  |
| <ul> <li>Problems with metal objects</li> </ul> |  |
| Low(er) frequency                               |  |
| Limited range                                   |  |
| Limited number of trackers                      |  |
|                                                 |  |
| 10                                              |  |
|                                                 |  |

# Capture Equipment

### • Electromechanical





Analogus

П



# Performance Capture

- Many studios regard *Motion* Capture as evil
  - Synonymous with low quality motion
  - No directive / creative control
  - Cheap

### Performance Capture is different

- Use mocap device as an expressive input device
- Similar to digital music and MIDI keyboards

# Manipulating Motion Data • Basic tasks • Adjusting • Blending • Transitioning • Retargeting • Building graphs

## Adjusting

























# Blending / Adjustment

• Short edits will tend to look acceptable

- Longer ones will often exhibit problems
- Optimize to improve blends / adjustments
  - Add quality metric on adjustment
- Minimize accelerations / torques
- Explicit smoothness constraints
- Other criteria...







| Cyclification                                |    |  |
|----------------------------------------------|----|--|
|                                              |    |  |
|                                              |    |  |
| Special case of transitioning                |    |  |
| • Both motions are the same                  |    |  |
| Need to modify beginning and end of a motion |    |  |
| simultaneously                               |    |  |
|                                              |    |  |
|                                              |    |  |
|                                              |    |  |
|                                              | 31 |  |











# Motion graphs

### • Match imposed requirements

- Start at a particular location
- End at a particular location
- Pass through particular pose
- Can be solved using *dynamic programing*
- Efficiency issues may require approximate solution
- Notion of "goodness" of a solution

| Suggested Reading                                                                                                                                                            |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                              |  |
|                                                                                                                                                                              |  |
| <ul> <li>Fourier principles for emotion-based human figure animation, Unuma, Anjyo, and<br/>Takeuchi, SIGGRAPH 95</li> </ul>                                                 |  |
| <ul> <li>Motion signal processing, Bruderlin and Williams, SIGGRAPH 95</li> </ul>                                                                                            |  |
| Motion warping, Witkin and Popovic, SIGGRAPH 95                                                                                                                              |  |
| • Efficient generation of motion transitions using spacetime constrains, Rose et al., SIGGRAPH 96                                                                            |  |
| Retargeting motion to new characters, Gleicher, SIGGRAPH 98                                                                                                                  |  |
| <ul> <li>Verbs and adverbs: Multidimensional motion interpolation, Rose, Cohen, and<br/>Bodenheimer, IEEE: Computer Graphics and Applications, v. 18, no. 5, 1998</li> </ul> |  |
|                                                                                                                                                                              |  |
|                                                                                                                                                                              |  |
| 38                                                                                                                                                                           |  |

# Suggested Reading

Retargeting motion to new characters, Gleicher, SIGGRAPH 98

Footskate Cleanup for Motion Capture Editing, Kovar, Schreiner, and Gleicher, SCA 2002.

Interactive Motion Generation from Examples, Arikan and Forsyth, SIGGRAPH 2002.

Motion Synthesis from Annotations, Arikan, Forsyth, and O'Brien, SIGGRAPH 2003.

Pushing People Around, Arikan, Forsyth, and O'Brien, unpublished.

• Automatic Joint Parameter Estimation from Magnetic Motion Capture Data, O'Brien, Bodenheimer, Brostow, and Hodgins, GI 2000.

 Skeletal Parameter Estimation from Optical Motion Capture Data, Kirk, O'Brien, and Forsyth, CVPR 2005.

Perception of Human Motion with Different Geometric Models, Hodgins, O'Brien, and Tumblin, IEEE:TVCG 1998.