CS-184: Computer Graphics

Lecture #19: Forward and Inverse Kinematics

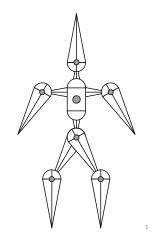
Prof. James O'Brien University of California, Berkeley

V2011-F-19-1.0

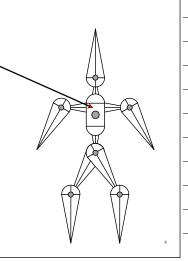
Today

- Forward kinematics
- Inverse kinematics
- Pin joints
- Ball joints
- Prismatic joints

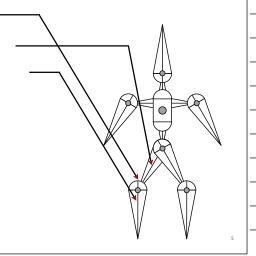
- Articulated skeleton
 - Topology (what's connected to what)
 - Geometric relations from joints
 - Independent of display geometry
 - Tree structure
 - Loop joints break "tree-ness"



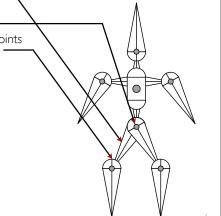
- Root body
 - Position set by "global" transformation
- Root joint
 - Position
 - Rotation
- Other bodies relative to root
- · Inboard toward the root
- · Outboard away from root



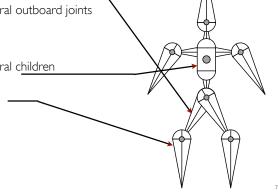
- A joint
 - · Joint's inboard body
 - Joint's outboard body



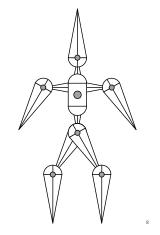
- A body
 - Body's inboard joint
 - Body's outboard joint
 - May have several outboard joints



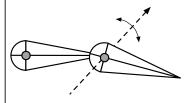
- A body
 - Body's inboard joint
 - Body's outboard joint
 - May have several outboard joints
 - Body's parent
 - Body's child
 - May have several children

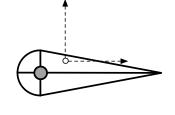


- Interior joints
 - Typically not 6 DOF joints
 - Pin rotate about one axis
- Ball arbitrary rotation
- Prism translation along one axis



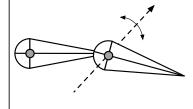
- Pin Joints
 - Translate inboard joint to local origin
- Apply rotation about axis
- Translate origin to location of joint on outboard body

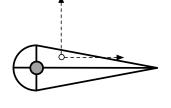




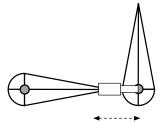
9

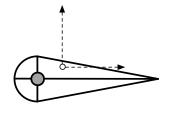
- Ball Joints
 - Translate inboard joint to local origin
 - Apply rotation about arbitrary axis
 - Translate origin to location of joint on outboard body





- Prismatic Joints
 - Translate inboard joint to local origin
- Translate along axis
- Translate origin to location of joint on outboard body

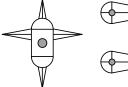




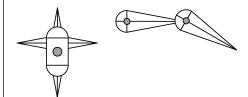
П

Forward Kinematics

• Composite transformations up the hierarchy



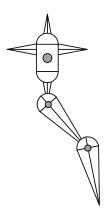
• Composite transformations up the hierarchy



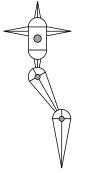
13

Forward Kinematics

• Composite transformations up the hierarchy



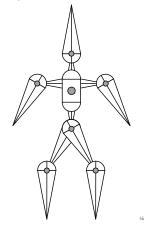
• Composite transformations up the hierarchy



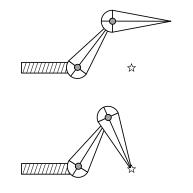
15

Forward Kinematics

• Composite transformations up the hierarchy

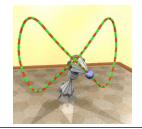


- Given
- Root transformation
- Initial configuration
- Desired end point location
- Find
- Interior parameter settings



17

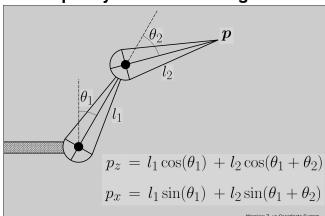
Inverse Kinematics



gon Paszto

• A simple two segment arm in 2D

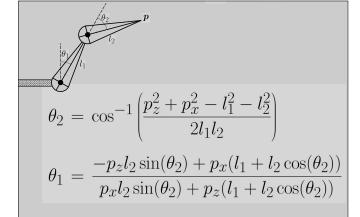
Simple System: A Two Segment Arm



Inverse Kinematics

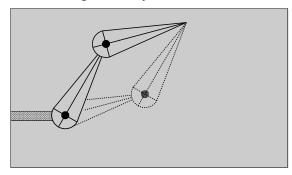
• Direct IK: solve for the parameters

Direct IK: Solve for and



- Why is the problem hard?
 - Multiple solutions separated in configuration space

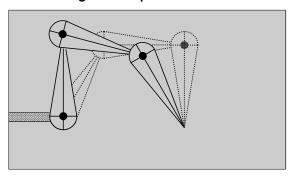
Multiple solutions separated in configuration space



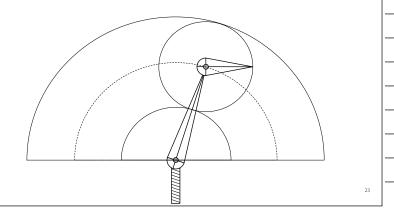
Inverse Kinematics

- Why is the problem hard?
 Why is this a hard problem?
 Multiple solutions connected in configuration space

Multiple solutions connected in configuration space



- Why is the problem hard?
- Solutions may not always exist

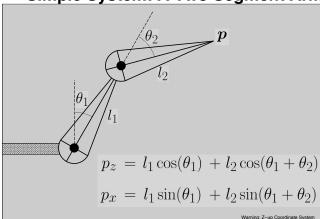


Inverse Kinematics

- Numerical Solution
- Start in some initial configuration
- Define an error metric (e.g. goal pos current pos)
- Compute Jacobian of error w.r.t. inputs
- Apply Newton's method (or other procedure)
- Iterate...

• Recall simple two segment arm:

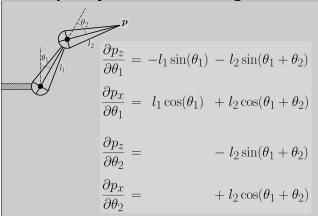
Simple System: A Two Segment Arm



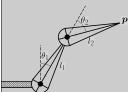
Inverse Kinematics

• We can write of the derivatives

Simple System: A Two Segment Arm



Simple System: A Two Segment Arm



Direction in Config. Space

$$\theta_1 = c_1 \theta_*$$

$$\theta_2 = c_2 \theta_*$$

$$\frac{\partial p_z}{\partial \theta_*} = c_1 \frac{\partial p_z}{\partial \theta_1} + c_2 \frac{\partial p_z}{\partial \theta_2}$$

27

Inverse Kinematics

The Jacobian (of p w.r.t. θ)

$$J_{ij} = \frac{\partial p_i}{\partial \theta_j}$$

Example for two segment arm

$$J = \begin{bmatrix} \frac{\partial p_z}{\partial \theta_1} & \frac{\partial p_z}{\partial \theta_2} \\ \frac{\partial p_x}{\partial \theta_1} & \frac{\partial p_x}{\partial \theta_2} \end{bmatrix}$$

The Jacobian (of p w.r.t. θ)

$$J = \begin{bmatrix} \frac{\partial p_z}{\partial \theta_1} & \frac{\partial p_z}{\partial \theta_2} \\ \frac{\partial p_x}{\partial \theta_1} & \frac{\partial p_x}{\partial \theta_2} \end{bmatrix}$$

$$\frac{\partial \boldsymbol{p}}{\partial \theta_*} = J \cdot \begin{bmatrix} \frac{\partial \theta_1}{\partial \theta_*} \\ \frac{\partial \theta_2}{\partial \theta_*} \end{bmatrix} = J \cdot \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$

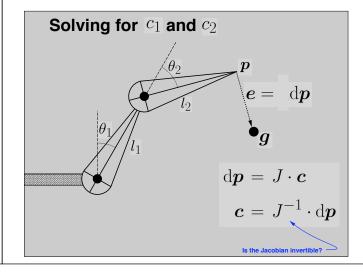
29

Inverse Kinematics

Solving for c_1 and c_2

$$egin{aligned} oldsymbol{c} = egin{bmatrix} c_1 \ c_2 \end{bmatrix} & \mathrm{d}oldsymbol{p} = egin{bmatrix} \mathrm{d}p_z \ \mathrm{d}p_x \end{bmatrix} \end{aligned}$$

$$\mathbf{d}\boldsymbol{p} = J \cdot \boldsymbol{c}$$
$$\boldsymbol{c} = J^{-1} \cdot \mathbf{d}\boldsymbol{p}$$



Inverse Kinematics

- Problems
 - Jacobian may (will!) not always be invertible
 - Use pseudo inverse (SVD)
 Robust terative metrod
 - Jacobian is Jacobian may (will) not be invertible

Option #1: Use pseudo inverse (SVD)

• Nonlinear optimization setterand emetro (mostly) well behaved

$$J = \begin{bmatrix} \frac{\partial p_z}{\partial \theta_1} & \frac{\partial p_z}{\partial \theta_2} \\ \frac{\partial p_x}{\partial \theta_1} & \frac{\partial p_x}{\partial \theta_2} \end{bmatrix} = J(\theta)$$

Non-linear optimization...

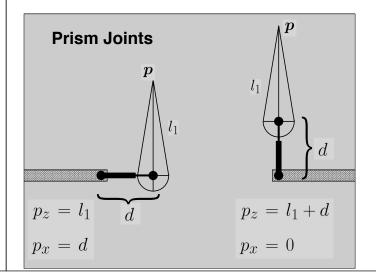
but problem is well behaved (mostly)

- More complex systems
 - More complex joints (prism and ball)
- More links
- Other criteria (COM or height)
- Hard constraints (joint limits)
- Multiple criteria and multiple chains

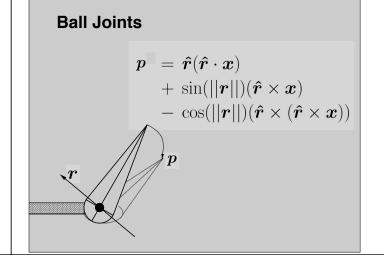
33

Inverse Kinematics

- Some issues
- How to pick from multiple solutions?
- Robustness when no solutions
- Contradictory solutions
- Smooth interpolation
 - Interpolation aware of constraints



Inverse Kinematics



Ball Joints (moving axis)

$$\mathrm{d} oldsymbol{p} = [\mathrm{d} oldsymbol{r}] \cdot e^{[oldsymbol{r}]} \cdot oldsymbol{x} = [\mathrm{d} oldsymbol{r}] \cdot oldsymbol{p} = -[oldsymbol{p}] \cdot \mathrm{d} oldsymbol{r}$$

That is the Jacobian for this joint

$$[\mathbf{r}] = \begin{bmatrix} 0 & -r_3 & r_2 \\ r_3 & 0 & -r_1 \\ -r_2 & r_1 & 0 \end{bmatrix}$$

 $[r] \cdot x = r imes x$

37

Inverse Kinematics

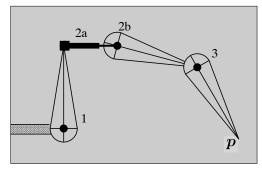
Ball Joints (fixed axis)

$$\mathrm{d} oldsymbol{p} = (\mathrm{d} heta)[\hat{oldsymbol{r}}] \cdot oldsymbol{x} = -[oldsymbol{x}] \cdot \hat{oldsymbol{r}} \mathrm{d} heta$$

That is the Jacobian for this joint

- Many links / joints
 - · Need a gene**Many**dd**inks/dqints**ian

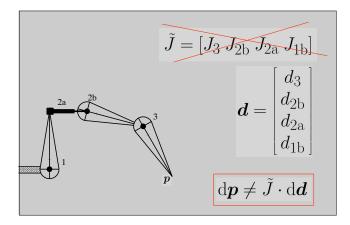
We need a generic method of building Jacobian



3

Inverse Kinematics

Can't just concatenate individual matrices
 Many Links/Joints



Many Links/Joints

Transformation from body to world

$$X_{0 \leftarrow i} = \prod_{j=1}^{i} X_{(j-1) \leftarrow j} = X_{0 \leftarrow 1} \cdot X_{1 \leftarrow 2} \cdots$$

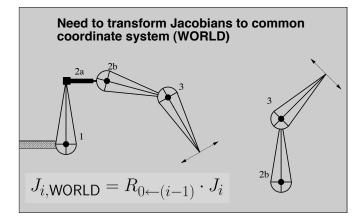
Rotation from body to world

$$R_{0 \leftarrow i} = \prod_{j=1}^{i} R_{(j-1) \leftarrow j} = R_{0 \leftarrow 1} \cdot R_{1 \leftarrow 2} \cdots$$

41

Inverse Kinematics

Many Links/Joints



Many Links/Joints

43

Suggested Reading

- Advanced Animation and Rendering Techniques by Watt and Watt
- Chapters 15 and 16