CS-I 84: Computer Graphics

Lecture \#|7: Global Illumination

Prof. James O'Brien
University of California, Berkeley
vol| $1 \cdot 17.10$ \qquad

Today

- The Rendering Equation
- Radiosity Method
- Photon Mapping
- Ambient Occlusion

The Rendering Equation

\qquad

The Rendering Equation

The light shining on \times from x^{\prime} is equal to:

- the emitted light from x toward x, plus
- for each bit of surface in the scene, how much light shines from that bit onto x ' and is reflected toward x, scaled appropriately
$L_{s}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\delta\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\left[E\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+\int_{S} \rho_{x^{\prime}}\left(\mathbf{x}, \mathbf{x}^{\prime \prime}\right) L_{s}\left(\mathbf{x}^{\prime}, \mathbf{x}^{\prime \prime}\right) \frac{\cos \left(\theta^{\prime}\right) \cos \left(\theta^{\prime \prime}\right)}{\left\|\mathbf{x}^{\prime}-\mathbf{x}^{\prime \prime}\right\| \|^{2}} \mathrm{~d} \mathbf{x}^{\prime \prime}\right]$

\square
\square

The Rendering Equation

$L_{s}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\delta\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\left[E\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+\int_{S} \rho_{x^{\prime}}\left(\mathbf{x}, \mathbf{x}^{\prime \prime}\right) L_{s}\left(\mathbf{x}^{\prime}, \mathbf{x}^{\prime \prime}\right) \frac{\cos \left(\theta^{\prime}\right) \cos \left(\theta^{\prime \prime}\right)}{\left\|\mathbf{x}^{\prime}-\mathbf{x}^{\prime \prime}\right\|^{2}} \mathrm{~d} \mathbf{x}^{\prime \prime}\right]$ \qquad

The Rendering Equation
$L_{s}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\delta\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\left[E\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+\int_{S} \rho_{s^{\prime}\left(\mathbf{x}, \mathbf{x}^{\prime \prime}\right) L_{s}\left(\mathbf{x}^{\prime}, \mathbf{x}^{\prime \prime}\right) \frac{\cos \left(\theta^{\prime}\right) \cos \left(\theta^{\prime \prime}\right)}{\left\\|\mathbf{x}^{\prime}-\mathbf{x}^{\prime \prime}\right\\|^{2}} \mathrm{~d} \mathbf{x}^{\prime \prime}}^{\text {Light energy hitting } \times \text { from } x^{\prime}}\right.$

The Rendering Equation

$$
L_{s}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\delta\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\left[E\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+\int_{S} \rho_{x}\left(\mathbf{x}, \mathbf{x}^{\prime \prime}\right) L_{s}\left(\mathbf{x}^{\prime}, \mathbf{x}^{\prime \prime}\right) \frac{\cos \left(\theta^{\prime}\right) \cos \left(\theta^{\prime \prime}\right)}{\left\|\mathbf{x}^{\prime}-\mathbf{x}^{\prime \prime}\right\|^{2}} \mathrm{~d} \mathbf{x}^{\prime \prime}\right]
$$

The Rendering Equation
$L_{s}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\delta\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\left[E\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+\int_{S} \rho_{x}\left(\mathbf{x}, \mathbf{x}^{\prime \prime}\right) L_{s}\left(\mathbf{x}^{\prime}, \mathbf{x}^{\prime \prime}\right) \frac{\cos \left(\theta^{\prime}\right) \cos \left(\theta^{\prime \prime}\right)}{\left\|\mathbf{x}^{\prime}-\mathbf{x}^{\prime \prime}\right\|^{2}} \mathrm{~d} \mathbf{x}^{\prime \prime}\right]$

The Rendering Equation

$$
L_{s}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\delta\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\left[E\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+\int_{S} \rho_{x}\left(\mathbf{x}, \mathbf{x}^{\prime \prime}\right) L_{s}\left(\mathbf{x}^{\prime}, \mathbf{x}^{\prime \prime}\right) \frac{\cos \left(\theta^{\prime}\right) \cos \left(\theta^{\prime \prime}\right)}{\left\|\mathbf{x}^{\prime}-\mathbf{x}^{\prime \prime}\right\|^{2}} \mathrm{~d} \mathbf{x}^{\prime \prime}\right]
$$

The Rendering Equation
$L_{s}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\delta\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\left[E\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+\int_{S} \rho_{x}\left(\mathbf{x}, \mathbf{x}^{\prime \prime}\right) L_{s}\left(\mathbf{x}^{\prime}, \mathbf{x}^{\prime \prime}\right) \frac{\cos \left(\theta^{\prime}\right) \cos \left(\theta^{\prime \prime}\right)}{\left\|\mathbf{x}^{\prime}-\mathbf{x}^{\prime \prime}\right\|^{2}} \mathrm{~d} \mathbf{x}^{\prime \prime}\right]$ \qquad

The Rendering Equation

$$
L_{s}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\delta\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\left[E\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+\int_{S} \rho_{x^{\prime}}\left(\mathbf{x}, \mathbf{x}^{\prime \prime}\right) L_{s}\left(\mathbf{x}^{\prime}, \mathbf{x}^{\prime \prime}\right) \frac{\cos \left(\theta^{\prime}\right) \cos \left(\theta^{\prime \prime}\right)}{\left\|\mathbf{x}^{\prime}-\mathbf{x}^{\prime \prime}\right\|^{2}} \mathrm{~d} \mathbf{x}^{\prime \prime}\right]
$$

The Rendering Equation

$$
L_{s}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\delta\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\left[E\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+\int_{S} \rho_{x}\left(\mathbf{x}, \mathbf{x}^{\prime \prime}\right) L_{s}\left(\mathbf{x}^{\prime}, \mathbf{x}^{\prime \prime}\right) \frac{\cos \left(\theta^{\prime}\right) \cos \left(\theta^{\prime \prime}\right)}{\left\|\mathbf{x}^{\prime}-\mathbf{x}^{\prime \prime}\right\|^{2}} \mathrm{~d} \mathbf{x}^{\prime \prime}\right]
$$

The Rendering Equation
 $L_{s}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\delta\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\left[E\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+\int_{S} \rho_{x}\left(\mathbf{x}, \mathbf{x}^{\prime \prime}\right) L_{s}\left(\mathbf{x}^{\prime}, \mathbf{x}^{\prime \prime}\right) \frac{\cos \left(\theta^{\prime}\right) \cos \left(\theta^{\prime \prime}\right)}{\left\|\mathbf{x}^{\prime}-\mathbf{x}^{\prime \prime}\right\|^{2}} \mathrm{~d} \mathbf{x}^{\prime \prime}\right]$

\square
\square
\square
\square

| | Radiosity |
| :--- | :--- | :--- |
| | |
| | |
| - Assume all materials are perfectly Lambertian (diffuse only, | |
| no specularities) | |
| - Removes all dependance on directions | |
| - Reduces dimensionality of lighfield | |
| - Allows a FM solution (break up into chunks) | |
| - Can also relax assumption slightly | |
| | \square |

Assume Lambertian					
$\begin{aligned} & L_{s}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\delta\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\left[E\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+\int_{S} \rho_{x^{\prime}}\left(\mathbf{x}, \mathbf{x}^{\prime \prime}\right) L_{s}\left(\mathbf{x}^{\prime}, \mathbf{x}^{\prime \prime}\right) \frac{\cos \left(\theta^{\prime}\right) \cos \left(\theta^{\prime \prime}\right)}{\left\\|\mathbf{x}^{\prime}-\mathbf{x}^{\prime \prime}\right\\|^{2}} \mathrm{~d} \mathbf{x}^{\prime \prime}\right. \\ & L_{s}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\frac{\delta\left(\mathbf{x}, \mathbf{x}^{\prime}\right)}{}\left[E_{x^{\prime}}+\int_{S} \rho_{x^{\prime}} L_{s}\left(\mathbf{x}^{\prime}, \mathbf{x}^{\prime \prime}\right) \frac{\cos \left(\theta^{\prime}\right) \cos \left(\theta^{\prime \prime}\right)}{\left\\|\mathbf{x}^{\prime}-\mathbf{x}^{\prime \prime}\right\\|^{2}} \mathrm{~d} \mathbf{x}^{\prime \prime}\right] \\ & \text { Only term dependent on } \mathbf{x} \end{aligned}$					

Discretize into Patches

Discretize into Patches

The candessicicr Theater
Mank Nacke Acortiects.

Rewrite in Terms of Patches

$$
\begin{gathered}
H_{x^{\prime}}=E_{x^{\prime}}+\rho_{x^{\prime}} \int_{S} \delta\left(\mathbf{x}^{\prime}, \mathbf{x}^{\prime \prime}\right) \frac{H_{x^{\prime \prime}} \cos \left(\theta^{\prime}\right) \cos \left(\theta^{\prime \prime}\right)}{2 \pi} \frac{\left\|\mathbf{x}^{\prime}-\mathbf{x}^{\prime \prime}\right\|^{2}}{} \mathrm{~d} \mathbf{x}^{\prime \prime} \\
H_{i}=E_{i}+\rho_{i} \sum_{j} H_{j} \int_{S_{j}} \delta_{i j} \frac{\cos \left(\theta_{i}\right) \cos \left(\theta_{j}\right)}{2 \pi\left\|\mid \mathbf{c}_{i}-\mathbf{x}\right\|^{2}} \mathrm{~d} \mathbf{x}
\end{gathered}
$$

Rewrite in Terms of Patches

$$
\begin{aligned}
& H_{x^{\prime}}=E_{x^{\prime}}+\rho_{x^{\prime}} \int_{S} \delta\left(\mathbf{x}^{\prime}, \mathbf{x}^{\prime \prime}\right) \frac{H_{x^{\prime}} \cos \left(\theta^{\prime}\right) \cos \left(\theta^{\prime \prime}\right)}{2 \pi} \frac{\left\|\mathbf{x}^{\prime}-\mathbf{x}^{\prime \prime}\right\|^{2}}{} \mathrm{~d} \mathbf{x}^{\prime \prime} \\
& H_{i}=E_{i}+\rho_{i} \sum_{j} H
\end{aligned}
$$

$$
\text { Form factor from } \mathrm{j} \text { to } \mathrm{i}, F_{i j} \backslash
$$

Rewrite in Terms of Patches

$$
\begin{aligned}
& H_{x^{\prime}}=E_{x^{\prime}}+\rho_{x^{\prime}} \int_{S} \delta\left(\mathbf{x}^{\prime}, \mathbf{x}^{\prime \prime}\right) \\
& H_{i}=E_{i}+\rho_{i} \sum_{j} H^{2 \pi} \frac{\cos \left(\theta^{\prime}\right) \cos \left(\theta^{\prime \prime}\right)}{\left\|\mathbf{x}^{\prime}-\mathbf{x}^{\prime \prime}\right\|^{2}} \mathrm{~d} \mathbf{x}^{\prime \prime}
\end{aligned}
$$

Example of a rough approximation:

$$
F_{i j} \approx \delta_{i j} \frac{\cos \left(\theta_{i}\right) \cos \left(\theta_{j}\right)}{2 \pi\left\|\mathbf{c}_{i}-\mathbf{c}_{j}\right\|^{2}} A_{j}
$$

Radiosity Method

- Given the E_{i} and ρ_{i}
- First compute $F_{i j}$

- Comments:
- The matrix \mathbf{A} is typically very large
- It is also sparse (why?)
- Should be solved with an iterative method
- e.g.:Jacobi or Gauss-Seidel

Solution is view independent

Radiosity Method

- Given the light emitted and surface properties
- First compute $F_{i j}$, form factors between patches
- Then solve a linear system to balance energy between all patches
- Comments:
- The system is very large
- It is also sparse (why?)
- Should be solved with an iterative method
- e.g.: Jacobi or Gauss-Seidel
- Solution is view independent

\square
\square
\square

Progressive Radiosity

- If magnitude of eigenvalues of $\mathbf{A}<1$

$$
(\mathbf{I}-\mathbf{A})^{-1}=\mathbf{I}+\mathbf{A}+\mathbf{A}^{2}+\mathbf{A}^{3}+\cdots
$$

- True for form-factor matrices
- Use Gauss-Seidel-like iteration but reorder by priority

$$
\begin{aligned}
& \mathbf{h}^{k+1}=\mathbf{h}^{k}+\mathbf{u}^{k+1} \\
& \mathbf{u}^{k+1}=\mathbf{A} \mathbf{u}^{k} \\
& \mathbf{h}^{0}=0 \quad \mathbf{u}^{0}=\mathbf{e}
\end{aligned}
$$

Progressive Rad	diosity

| | TOUChup |
| :--- | :--- | :--- | :--- |
| | Each patch will have a constant color
 • Smooth solution (e.g. average to vertices) |

OtherThings

- Each patch will have a constant color
- Smooth solution (e.g. average to vertices)

No specular reflection

- Add Phong specular term or raytraced specular reflection
- Grid artifacts
- Be clever with grid...
\longrightarrow
\qquad
\square

| Hierarchical Radiosity |
| :--- | :--- |
| • Light smoothes with distance |
| \cdot compare $1 / h^{2}$ with $1 /\left(h^{2}+d^{2}\right)$ as h gets large |
| \square |
| \square |

Hierarchical Radiosity

- Light smoothes with distance
- Compare $1 / h^{2}$ with $1 /\left(h^{2}+d^{2}\right)$ as h gets large

Group patches into hierarchy

- Far interactions use lower-res form factors

\qquad

Computing Form Factors

- Form factors have a geometric meaning

Images from
SIGGRAPH 9
SIGGRAPH 93 Education Slide Set
by Stephen Spencer

Computing Form Factors

- Form factors have a geometric meaning
- "Hemicube" algorithm uses regular scan conversion

\square
\square
\square

Computing Form Factors

- Form factors have a geometric meaning
- "Hemicube" algorithm uses regular scan conversion
- Also computed by ray-based sampling
- In practice, computing form factors is the bottleneck

Photon Mapping

- Lights cast "photons" into environment
- Cast in random directions
- Trace into environment
- Store records at intersections

Photon Mapping

- Lights cast "photons" into environment
- Cast in random directions
- Trace into environment
- Store records at intersections
- With KD-Trees...

Ambient Occlusion

- A "hack" to create more realistic ambient illumination cheaply
- Assume light from everywhere is partially blocked by local objects
- At a point on the surface cast rays at random
- Ambient term is proportional to percent of rays that hit nothing
- Weight average by cosine of angle with normal
- Take into account how far before occluded
Ambient Occlusion

	Ambient Occlusion
Diffuse Only Ambient Occlusion Combined	

Ambient Occlusion

nVidia Gelato Demo Image

