CS-184: Computer Graphics	
Lecture #14: Natural Splines, B-Splines, and NURBS	
Prof. James O'Brien University of California, Berkeley	

	Natural Splines		
	• Draw a ''smooth'' line through several p	oints	
		A real draftsman's spline.	
	X	Image from Carl de Boor's webpage.	

Natural Cubic Splines	
 Interpolate data points No convex hull property Non-local support Consider matrix structure C² using cubic polynomials 	

B-Splines	
• Build a curve w/ overlapping bumps	
 Continuity Inside bumps C² Bumps "fade out" with C² continuity 	
• Boundaries	
CircularRepeat end pointsExtra end points	
	15

B-Splines	
 Notation The basis functions are the b_i(u) "Hump" functions are the concatenated function Sometimes the humps are called basis can be confusing The U_i are the knot locations The weights on the hump/basis functions are control points 	

B-Splines

- Similar construction method can give higher continuity with higher degree polynomials
- Repeating knots drops continuity
- Limit as knots approach each other
- Still cubics, so conversion to other cubic basis is just a matrix multiplication

