CS-1 84: Computer Graphics

Lecture \#|4: Natural Splines, B-Splines, and NURBS

Prof. James O'Brien
University of California, Berkeley
voliflilile

Natural Cubic Splines

Given $n+1$ points

- Generate a curve with n segments
- Curves passes through points
- Curve is C^{2} continuous
- Use cubics because lower order is better...

\square
\square
\square
\square
\square

B-Splines

- Goal: C^{2} cubic curves with local support
- Give up interpolation
- Get convex hull property
- Build basis by designing "hump" functions

B-Splines

\square
\square

| | B-Splines | |
| :---: | :---: | :---: | :---: | :---: |
| | | |
| | | |

| B-Splines | | |
| :---: | :---: | :---: | :---: | :---: |
| | | |

B-Splines

	B-Splines	
		\square

B-Splines	
• Build a curve w/ overlapping bumps	
- Continuity	
• Inside bumps C^{2}	
• Bumps "fade out" with C^{2} continuity	
- Boundaries	
• Circular	
• Repeat end points	
• Extra end points	
	\square

| | B-Splines |
| :--- | :--- | :--- |
| - Notation | |
| - The basis functions are the $b_{i}(u)$ | |
| - "Hump". functions are the concatenated function | |
| - Sometimes the humps are called basis... can be confusing | |
| - The u_{i} are the knot locations | |
| - The weights on the hump/basis functions are control points | |

B-Splines

- Similar construction method can give higher continuity with higher degree polynomials
- Repeating knots drops continuity
- Limit as knots approach each other
- Still cubics, so conversion to other cubic basis is just a matrix multiplication

\square
\square

B-Splines

- Geometric construction
- Due to Cox and de Boor
- My own notation, beware if you compare w/ text

\square
\square

