CS- 184: Computer Graphics

Lecture \#|0: Scan Conversion
Prof. James O'Brien
University of California, Berkeley
volifas 10

	Today
-2D Scan Conversion	
• Drawing Lines	
• Drawing Curves	
•Filled Polyons	
• Filling Algorithms	

	Drawing a Line
	- Some things to consider - How thick are lines? - How should they join up? - Which pixels are the right ones? For example:

Drawing a Line

$$
y=m \cdot x+b, x \in\left[x_{1}, x_{2}\right]
$$

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

$$
b=y 1-m \cdot x_{1}
$$

Drawing a Line

void drawLine-Error2(int $x 1, x 2$, int $y 1, y 2)$
float $m=f l o a t(y 2-y 1) /(x 2-x 1)$
int $x=x 1$
int $y=y 1$
float e $=0.0$
while ($x<=x 2$)
setPixel (x, \underline{Y}, PIXEL_ON $)$
$x+=1$
e $+=\mathrm{m}$
if (e >=0.5)
$y^{+}=1$
e-=1.0

Drawing a Line

void drawLine-Error3(int $x 1, x 2$, int $y 1, y 2$)
int $x=x 1$
int $y=y 1$
float $e=-0.5$
while ($x<=x 2$)
setPixel (x,y,PIXEL_ON)
$\mathrm{x}+=1$
e $+=$ float $(y 2-y 1) /(x 2-x 1)$
if (e >=0.0)
$y^{+=1}$
$e-=1.0$

Drawing a Line

void drawLine-Error4(int $x 1, x 2$, int $y 1, y 2$)

```
int x = x1
```

int $y=y 1$
float $e=-0.5 *(x 2-x 1) \quad / /$ was -0.5
while $(x<=x 2)$
setPixel(x, y, PIXEL_ON)
$x+=1$
$\mathrm{e}+=\mathrm{y} 2-\mathrm{y} 1 \quad / /$ was $/(\mathrm{x} 2-\mathrm{x} 1)$
if $(\mathrm{e}>=0.0) \quad / /$ no change
$y^{+=1}$
$e-=(x 2-x 1)$
// was 1.0

Drawing a Line

void drawLine-Bresenham(int $x 1, x 2$, int $y 1, y 2)$
int $x=x 1$
int $y=y 1$
int $e=-(x 2-x 1)$
while ($\mathrm{x}<=\mathrm{x} 2$)
setPixel(x,y,PIXEL_ON)
Faster
Not wrong
$|m| \leq 1$
$x+=1$
$e+=2 *\left(y^{2}-y 1\right)$

$$
x_{1} \leq x_{2}
$$ if (e >= 0.0)

$y+=1$
$e-=2$ *(x2-x1)

| | Drawing Curves |
| :--- | :--- | :--- |
| Only one value of y for each value of $x \ldots$. | |
| | |

- Parametric curves
•Both x and y are a function of some third parameter
$x=f(u)$
$y=f(u)$
$\mathbf{x}=\mathbf{f}(u)$
$u \in\left[u_{0} \ldots u_{1}\right]$

| Drawing Curves | |
| :--- | :--- | :--- |
| | |
| | |
| | |

Drawing Curves

- Draw curves by drawing line segments
- Must take care in computing end points for lines
- How long should each line segment be?
$u \in \mathbf{x}(u) \quad u \in\left[u_{0} \ldots u_{1}\right]$

Drawing Curves

- Draw curves by drawing line segments
- Must take care in computing end points for lines
- How long should each line segment be?
- Variable spaced points

$$
\begin{aligned}
& \mathbf{x}=\mathbf{f}(u) \quad u \in\left[u_{0} \ldots u_{1}\right]
\end{aligned}
$$

	Drawing Curves
- Midpoint-test subdivision	
$\left\|\mathbf{l}\left(u_{\text {mid }}\right)-\mathbf{l}(0.5)\right\|$	

	Drawing Curves
•Midpoint-test subdivision	
	$\mid \mathbf{\| f (u _ { \text { mid } }) - \mathbf { l } (0 . 5) \|}$

Drawing Curves

- Midpoint-test subdivision

$$
\left|\mathbf{f}\left(u_{\text {mid }}\right)-\mathbf{l}(0.5)\right|
$$

Drawing Curves

- Midpoint-test subdivision
- Not perfect
- We need more information for a guarantee..

Filled Polygons

Filled Polygons

Filled Polygons

If we count TWICE...

Filled Polygons

Treat (scan $y=$ verte x y) as (scan $y>$ vertex y)

Filled Polygons

Horizontal edges

Filled Polygons

Horizontal edges

Filled Polygons

- "Equality Removal" applies to all vertices
- Both x and y coordinates

0000000000
0000000000
0000000000 0000000000 -000000000 -O-0000000 -00000000 - 0-00000

Filled Polygons

- Final result:

Filled Polygons
-Who does this pixel belong to?

$$
\begin{aligned}
& 1111 \\
& D 8
\end{aligned}
$$

Optimize forTriangles

- Spilt triangle into two parts
- Two edges per part
- Y-span is monotonic
- For each row
- Interpolate span
- Interpolate barycentric coordinates

Flood Fill

Flood Fill	
6	5-bem
O	Smen

Span-Based Algorithm

Definition: a run is a horizontal span of identically colored pixels

1. Start at pixel "s", the seed.
2. Find the run containing "s" ("b" to "a').
3. Fill that run with the new color.
4. Search every pixel above run, looking for pixels of interior color
5. For each one found,
6. Find left side of that run ("c"), and push that on a stack
7. Repeat lines 4-7 for the pixels below ("d").
8. Pop stack and repeat procedure with the new seed

The algorithm finds runs ending at "e"," f ", " g ", "h", and "i"

