
CS-184: Computer Graphics

Lecture #10: Scan Conversion
Prof. James O’Brien

University of California, Berkeley
V2011-F-09-1.0

With additional slides based on those of Maneesh Agrawala

2

Today

• 2D Scan Conversion
• Drawing Lines
• Drawing Curves
• Filled Polygons
• Filling Algorithms

3

Drawing a Line
• Basically, its easy... but for the details

• Lines are a basic primitive that needs to be done well...

4

Drawing a Line
• Basically, its easy... but for the details

• Lines are a basic primitive that needs to be done well...

From “A Procedural Approach to Style for NPR Line Drawing from 3D models,”
by Grabli, Durand, Turquin, Sillion

5

Drawing a Line

6

Drawing a Line

7

Drawing a Line
• Some things to consider
• How thick are lines?
• How should they join up?
• Which pixels are the right ones?

For example:

8

Drawing a Line

Inclusive
Endpoints

9

Drawing a Line

y= m · x+b,x 2 [x1,x2]

m=
y2� y1
x2� x1

b= y1�m · x1

10

Drawing a Line

Δx= 1
Δy= m ·Δx

x=x1
y=y1
while(x<=x2)
 plot(x,y)
 x++
 y+=Dy

11

Drawing a Line

Δx= 1
Δy= m ·Δx
After rounding

12

Drawing a Line

Δx= 1
Δy= m ·Δx

Accumulation of
roundoff errors

How slow is float-
to-int conversion?

y+= Δy

13

Drawing a Line

|m| 1 |m| > 1

14

Drawing a Line
void drawLine-Error1(int x1,x2, int y1,y2)
!
 float m = float(y2-y1)/(x2-x1)
 int x = x1
 float y = y1

 while (x <= x2)

 setPixel(x,round(y),PIXEL_ON)

 x += 1
 y += m

Not exact math

Accumulates errors

15

No more rounding

Drawing a Line
void drawLine-Error2(int x1,x2, int y1,y2)
!
 float m = float(y2-y1)/(x2-x1)
 int x = x1
 int y = y1
 float e = 0.0

 while (x <= x2)

 setPixel(x,y,PIXEL_ON)

 x += 1
 e += m
 if (e >= 0.5)
 y+=1
 e-=1.0

16

Drawing a Line
void drawLine-Error3(int x1,x2, int y1,y2)
!
 int x = x1
 int y = y1
 float e = -0.5

 while (x <= x2)

 setPixel(x,y,PIXEL_ON)

 x += 1
 e += float(y2-y1)/(x2-x1)
 if (e >= 0.0)
 y+=1
 e-=1.0

17

Drawing a Line
void drawLine-Error4(int x1,x2, int y1,y2)
!
 int x = x1
 int y = y1
 float e = -0.5*(x2-x1) // was -0.5

 while (x <= x2)

 setPixel(x,y,PIXEL_ON)

 x += 1
 e += y2-y1 // was /(x2-x1)
 if (e >= 0.0) // no change
 y+=1
 e-=(x2-x1) // was 1.0

18

Drawing a Line
void drawLine-Error5(int x1,x2, int y1,y2)
!
 int x = x1
 int y = y1
 int e = -(x2-x1) // removed *0.5

 while (x <= x2)

 setPixel(x,y,PIXEL_ON)

 x += 1
 e += 2*(y2-y1) // added 2*
 if (e >= 0.0) // no change
 y+=1
 e-=2*(x2-x1) // added 2*

19

Drawing a Line
void drawLine-Bresenham(int x1,x2, int y1,y2)
!
 int x = x1
 int y = y1
 int e = -(x2-x1)

 while (x <= x2)

 setPixel(x,y,PIXEL_ON)

 x += 1
 e += 2*(y2-y1)
 if (e >= 0.0)
 y+=1
 e-=2*(x2-x1)

Faster
Not wrong

|m| 1
x1 x2

20

Drawing Curves

y= f (x)

Only one value of y for each value of x...

21

Drawing Curves
• Parametric curves

• Both x and y are a function of some third parameter

y= f (u)
x= f (u)

x= f(u)

u 2 [u0 . . .u1]

22

Drawing Curves

x= f(u) u 2 [u0 . . .u1]

23

•Draw curves by drawing line segments
• Must take care in computing end points for lines
• How long should each line segment be?

Drawing Curves

x= f(u) u 2 [u0 . . .u1]

24

•Draw curves by drawing line segments
• Must take care in computing end points for lines
• How long should each line segment be?
• Variable spaced points

Drawing Curves

x= f(u) u 2 [u0 . . .u1]

25

Drawing Curves
•Midpoint-test subdivision

|f(umid)� l(0.5)|

26

Drawing Curves
•Midpoint-test subdivision

|f(umid)� l(0.5)|

27

Drawing Curves
•Midpoint-test subdivision

|f(umid)� l(0.5)|

28

Drawing Curves
•Midpoint-test subdivision
• Not perfect
• We need more information for a guarantee...

|f(umid)� l(0.5)|

29

Filled Polygons

30

Filled Polygons

31

Filled Polygons

32

Filled Polygons

33

Filled Polygons

34

Filled Polygons

35

Filled Polygons

36

Filled Polygons

Treat (scan y = vertex y) as (scan y >
vertex y)

37

Filled Polygons

Horizontal edges

38

Filled Polygons

Horizontal edges

39

• “Equality Removal” applies to all vertices

• Both x and y coordinates

Filled Polygons

40

• Final result:

Filled Polygons

41

•Who does this pixel belong to?

Filled Polygons

1

2

3
4

5

6

42

Drawing a Line
• How thick?

• Ends?

Butt

Round

Square

43

Drawing a Line
• Joining?

Ugly Bevel Round Miter

44

Inside/Outside Testing

The Polygon Non-exterior

Non-zero winding Parity

Optimize for Triangles

• Spilt triangle into two parts
• Two edges per part
• Y-span is monotonic

• For each row
• Interpolate span

• Interpolate barycentric
coordinates

45

46

Flood Fill

47

Flood Fill

Span-Based Algorithm
Definition: a run is a horizontal span of identically colored pixels

1. Start at pixel “s”, the seed.
2. Find the run containing “s” (“b” to “a”).
3. Fill that run with the new color.
4. Search every pixel above run, looking for pixels of interior color
5. For each one found,
6. Find left side of that run (“c”), and push that on a stack.
7. Repeat lines 4-7 for the pixels below (“d”).
8. Pop stack and repeat procedure with the new seed

The algorithm finds runs ending at “e”, “f”, “g”, “h”, and “i”

s ba
c

d
e f g
h

i

