CS-184: Computer Graphics

Lecture #8: Projection

Prof. James O'Brien University of California, Berkeley

V2009-F-08-1.0

Today

- Windowing and Viewing Transformations
- Windows and viewports
- Orthographic projection
- Perspective projection

	 	 	_

Screen Space

- Monitor has some number of pixels
- e.g. 1024 x 768
- Some sub-region used for given program
- You call it a window
- Let's call it a viewport instead

[1024,768]

[1024, 768]

[690, 705]

[60, 350]

[0,0] [0,0]

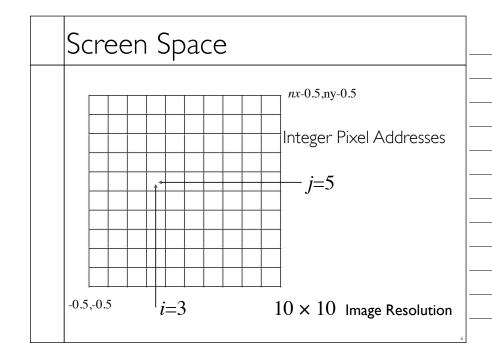
Screen Space

- May not really be a "screen"
 - Image file
 - Printer
 - Other
- · Little pixel details
- Sometimes odd
- Upside down
- Hexagonal

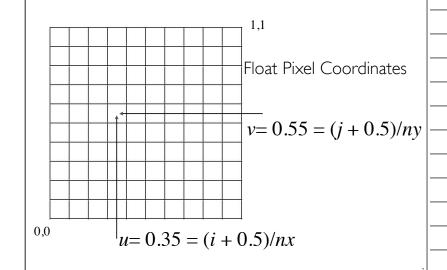
From Shirley textbook.

Screen Space

- Viewport is somewhere on screen
- You probably don't care where
- Window System likely manages this detail
- Sometimes you care exactly where
- Viewport has a size in pixels
- Sometimes you care (images, text, etc.)
- Sometimes you don't (using high-level library)

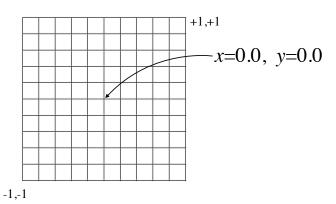


Screen Space



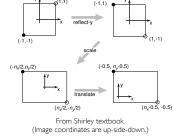
Canonical View Space

- Canonical view region
- 2D: [-1,-1] to [+1,+1]



Canonical View Space

- Canonical view region
 - 2D: [-1,-1] to [+1,+1]



$$\begin{bmatrix} i \\ j \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{n_x}{2} & 0 & \frac{n_x - 1}{2} \\ 0 & \frac{n_y}{2} & \frac{n_y - 1}{2} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

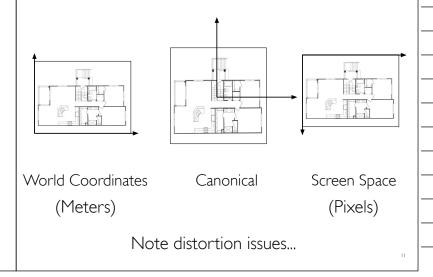
Remove minus for right-side-up

Canonical View Space

- Canonical view region
- 2D: [-1,-1] to [+1,+1]
- Define arbitrary *window* and define objects
- Transform window to canonical region
- Do other things (we'll see clipping latter)
- Transform canonical to screen space
- Draw it.

From Chirley toyt

Canonical View Space

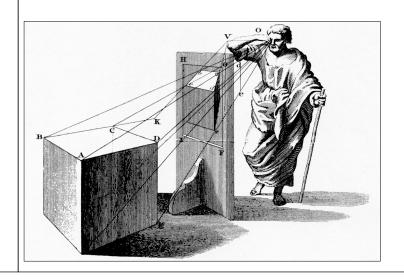


Projection

- Process of going from 3D to 2D
- Studies throughout history (e.g. painters)
- Different types of projection
- Linear
 - Orthographic
 - Perspective
- Nonlinear

Many special cases in books just one of these two...

Orthographic is special case of perspective...



Ray Generation vs. Projection

Viewing in ray tracing

- start with image point
- compute ray that projects to that point
- do this using geometry

Viewing by projection

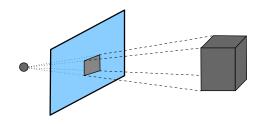
- start with 3D point
- compute image point that it projects to
- do this using transforms

Inverse processes

• ray gen. computes the preimage of projection

Linear Projection

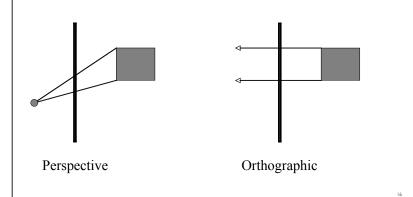
- Projection onto a <u>planar surface</u>
- Projection directions either
 - Converge to a point
- Are parallel (converge at infinity)

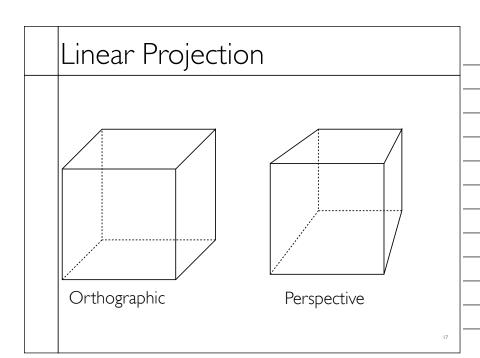


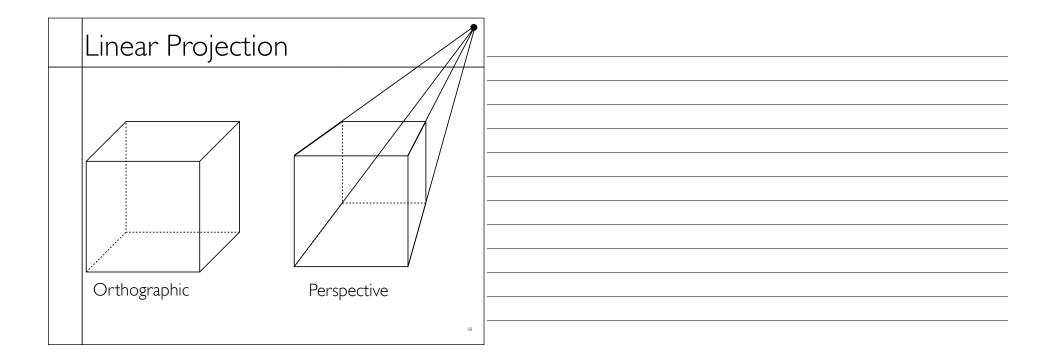
15

Linear Projection

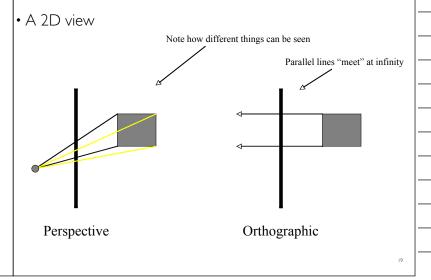
• A 2D view





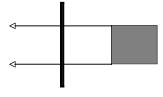


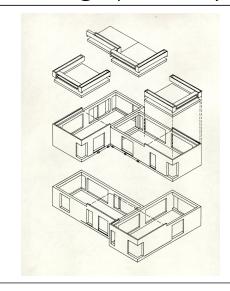
Linear Projection



Orthographic Projection

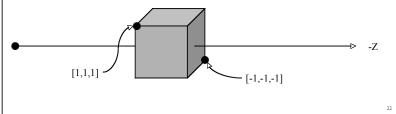
- No foreshortening
- Parallel lines stay parallel
- Poor depth cues



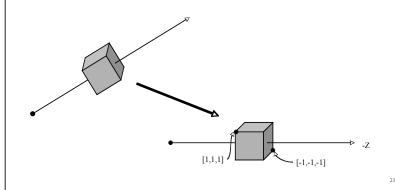


Canonical View Space

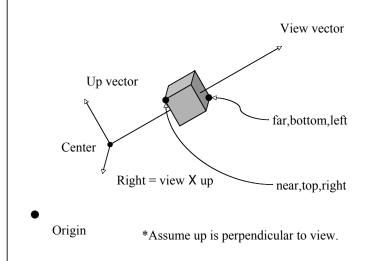
- Canonical view region
- 3D: [-1,-1,-1] to [+1,+1,+1]
- Assume looking down -Z axis
 - Recall that "Z is in your face"



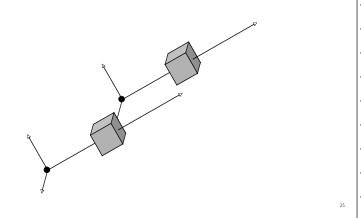
• Convert arbitrary view volume to canonical



Orthographic Projection

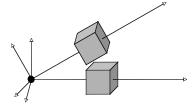


• Step 1: translate center to origin

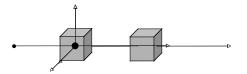


Orthographic Projection

- Step I: translate center to origin
- Step 2: rotate \emph{view} to $-\mathbf{Z}$ and \emph{up} to $+\mathbf{Y}$



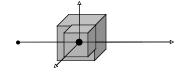
- Step 1: translate center to origin
- Step 2: rotate \emph{view} to $-\mathbf{Z}$ and \emph{up} to $+\mathbf{Y}$
- Step 3: center view volume



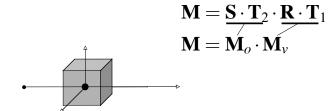
27

Orthographic Projection

- Step I: translate center to origin
- Step 2: rotate \emph{view} to $-\mathbf{Z}$ and \emph{up} to $+\mathbf{Y}$
- Step 3: center view volume
- Step 4: scale to canonical size



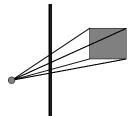
- Step 1: translate center to origin
- Step 2: rotate view to - ${f Z}$ and up to + ${f Y}$
- Step 3: center view volume
- Step 4: scale to canonical size

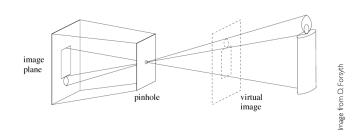


29

Perspective Projection

- Foreshortening: further objects appear smaller
- Some parallel line stay parallel, most don't
- Lines still look like lines
- Z ordering preserved (where we care)

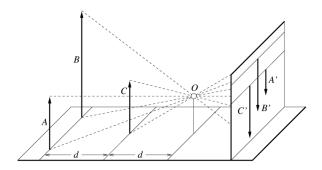




Pinhole a.k.a center of projection

31

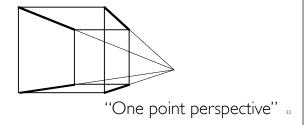
Perspective Projection



Foreshortening: distant objects appear smaller

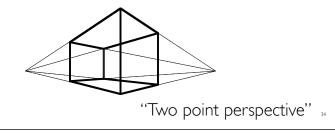
mage from D. Forsyth

- Vanishing points
 - Depend on the scene
 - Not intrinsic to camera

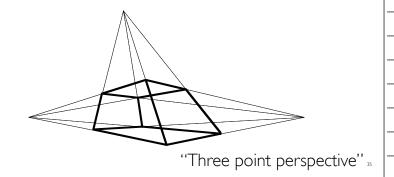


Perspective Projection

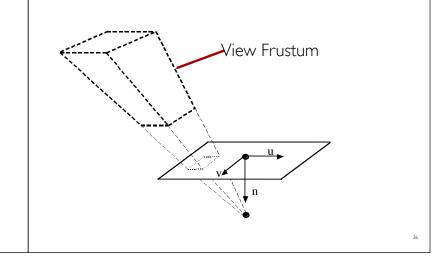
- Vanishing points
 - Depend on the scene
 - Nor intrinsic to camera

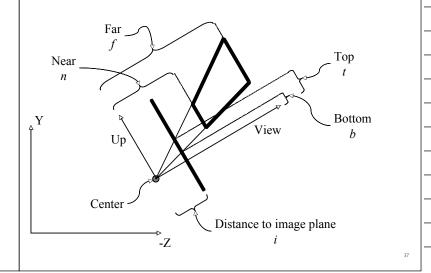


- Vanishing points
 - Depend on the scene
 - Not intrinsic to camera



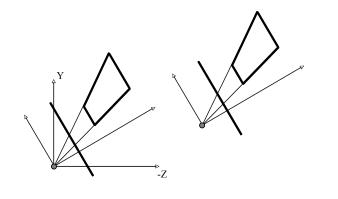
Perspective Projection



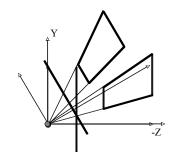


Perspective Projection

• Step 1:Translate *center* to origin



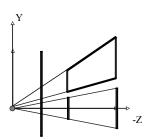
- Step 1:Translate *center* to origin
- Step 2: Rotate *view* to **-Z**, *up* to **+Y**



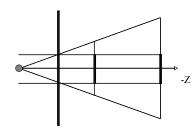
39

Perspective Projection

- Step 1:Translate *center* to origin
- Step 2: Rotate \emph{view} to $\emph{-}\mathbf{Z}$, \emph{up} to $\emph{+}\mathbf{Y}$
- Step 3: Shear center-line to **-Z** axis



- Step 1:Translate center to origin
- Step 2: Rotate view to -Z, up to +Y
- Step 3: Shear center-line to -Z axis
- Step 4: Perspective

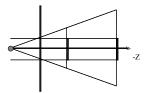


$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{i+f}{i} & f \\ 0 & 0 & \frac{-1}{i} & 0 \end{bmatrix}$$

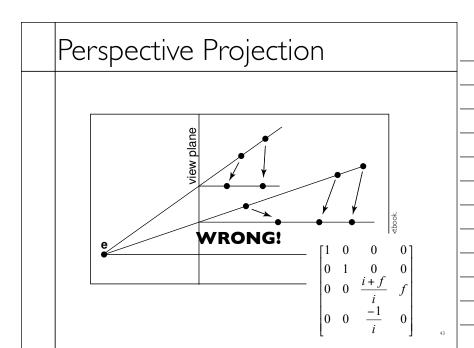
4

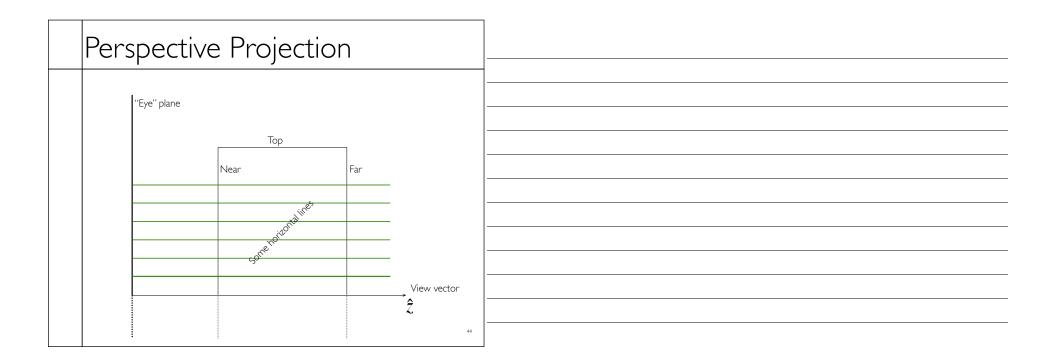
Perspective Projection

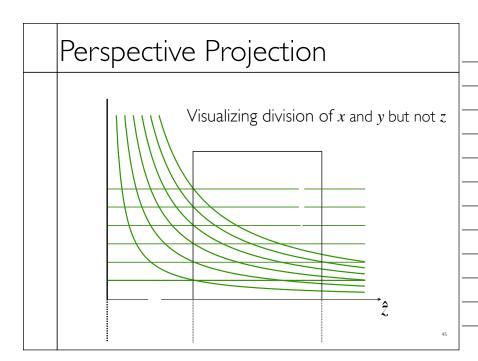
- Step 4: Perspective
- Points at z=-i stay at z=-i
- Points at z=-f stay at z=-f
- Points at z=0 goto $z=\pm\infty$
- Points at $z=-\infty$ goto z=-(i+f)
- x and y values divided by -z/i
- Straight lines stay straight
- Depth ordering preserved in [-i,-f]
- Movement along lines distorted

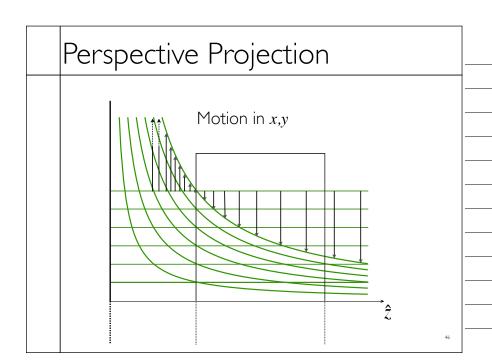


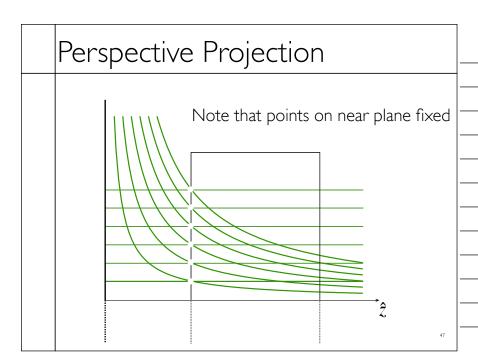
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{i+f}{i} & f \\ 0 & 0 & -\frac{1}{i} & 0 \end{bmatrix}$$

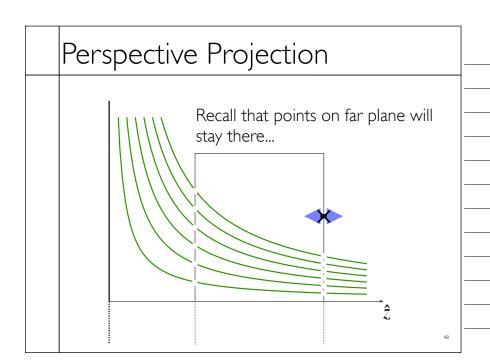


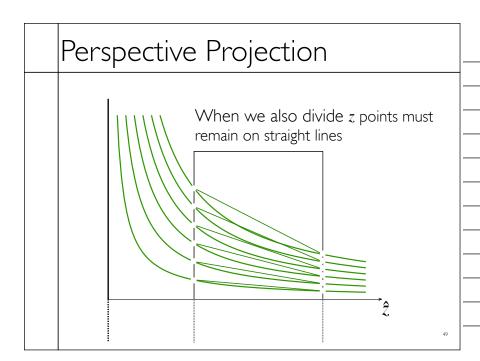


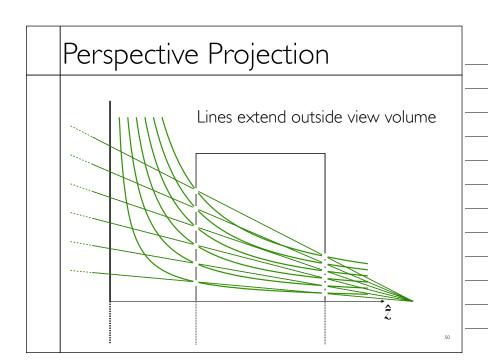


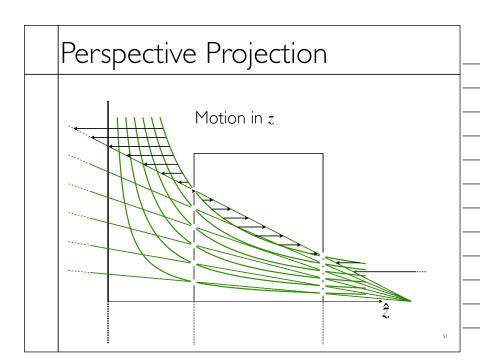


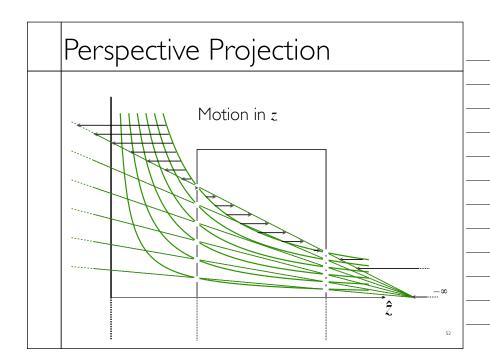


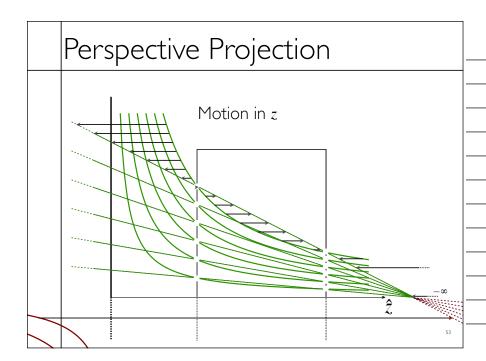


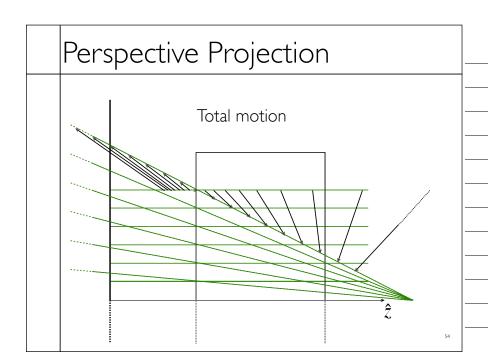




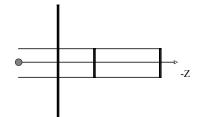








- Step 1:Translate *center* to orange
- Step 2: Rotate view to -Z, up to +Y
- Step 3: Shear center-line to -Z axis
- Step 4: Perspective
- Step 5: center view volume
- Step 6: scale to canonical size



Perspective Projection

- Step 1:Translate *center* to orange
- Step 2: Rotate *view* to **-Z**, *up* to **+Y**
- Step 3: Shear center-line to **-Z** axis
- Step 4: Perspective
- Step 5: center view volume
- Step 6: scale to canonical size

$$\mathbf{M} = \mathbf{M}_o \cdot \mathbf{M}_p \cdot \mathbf{M}_v$$

 M_{ν}

 M_{p}

 M_o

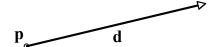
- There are other ways to set up the projection matrix
 - View plane at z=0 zero
 - Looking down another axis
- etc...
- Functionally equivalent

57

Vanishing Points

• Consider a ray:

$$\mathbf{r}(t) = \mathbf{p} + t \, \mathbf{d}$$



Vanishing Points

- Ignore **Z** part of matrix
- X and Y will give location in image plane
- Assume image plane at z=-i

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \text{whatever} \\ 0 & 0 & -1 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} I_x \\ I_y \\ I_w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

59

Vanishing Points

$$\begin{bmatrix} I_x \\ I_y \\ I_w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ y \\ -z \end{bmatrix}$$

$$\begin{bmatrix} I_x / I_w \\ I_y / I_w \end{bmatrix} = \begin{bmatrix} -x/z \\ -y/z \end{bmatrix}$$

Vanishing Points

• Assume

$$d_z = -1$$

$$\begin{bmatrix} I_x / I_w \\ I_y / I_w \end{bmatrix} = \begin{bmatrix} -x/z \\ -y/z \end{bmatrix} = \begin{bmatrix} \frac{p_x + td_x}{-p_z + t} \\ \frac{p_y + td_y}{-p_z + t} \end{bmatrix}$$

$$\lim_{t \to \pm \infty} = \begin{bmatrix} d_x \\ d_y \end{bmatrix}$$

61

Vanishing Points

$$\lim_{t \to \pm \infty} = \begin{bmatrix} d_x \\ d_y \end{bmatrix}$$

- ullet All lines in direction ${f d}$ converge to same point in the image plane -- the vanishing point
- Every point in plane is a v.p. for some set of lines
- Lines parallel to image plane ($d_z = 0$ vanish at infinity

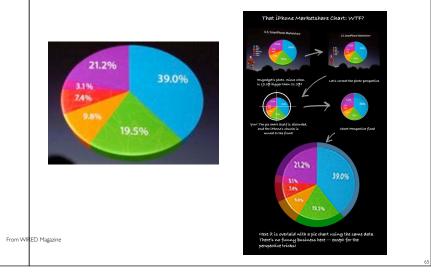
What's a horizon?

Perspective Tricks

Right Looks Wrong (Sometimes)

From Conjection of Geometric Perceptual Distortions in Pictures, Zorin and Barr SIGGRAPH 1995

Right Looks Wrong (Sometimes)



Strangeness

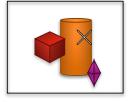
The Ambassadors by Hans Holbein the Younger

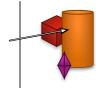
Strangeness

The Ambassadors by Hans Holbein the Younger

Ray Picking

• Pick object by picking point on screen



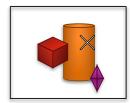


• Compute ray from pixel coordinates.

Ray Picking

• Transform from World to Screen is:

• What
$$\mathbf{Z}$$
 value?
$$\begin{bmatrix} W_x \\ W_y \\ W_z \\ W_w \end{bmatrix} = \mathbf{M}^{-1} \begin{bmatrix} I_x \\ I_y \\ I_z \\ I_w \end{bmatrix}$$

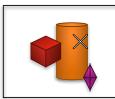


69

Ray Picking

- Recall that:
 - Points at z=-i stay at z=-i
 - Points at z=-f stay at z=-f

$$\mathbf{r}(t) = \mathbf{p} + t \mathbf{d}$$
 $\mathbf{r}(t) = \mathbf{a}_w + t(\mathbf{b}_w - \mathbf{a}_w)$



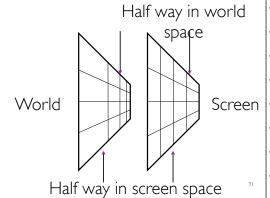


[.....·]

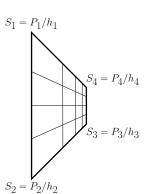
Depends on screen details, YMMV

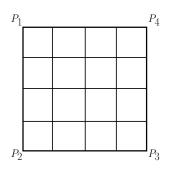
General idea should translate...

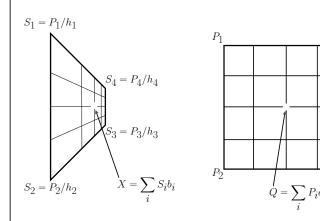
- Recall depth distortion from perspective
 - Interpolating in screen space different than in world
 - Ok, for shading (mostly)
- Bad for texture



Depth Distortion



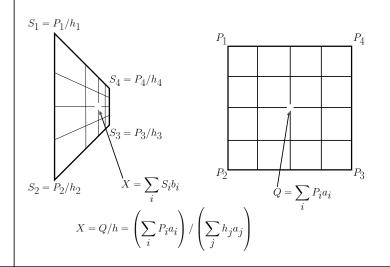


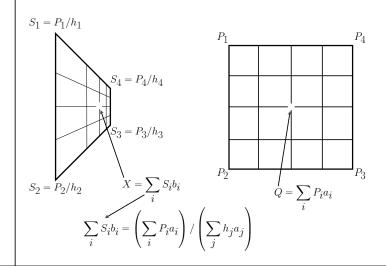


 P_4

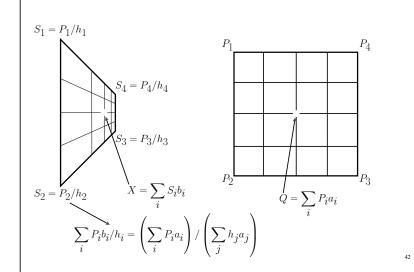
We know the $\ S_i$, $\ P_i$, and $\ b_i$, but not the a_i .

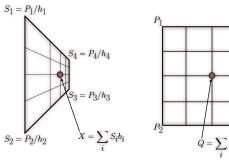
Depth Distortion





Depth Distortion





$$P_1 \qquad P_4$$

$$P_2 \qquad P_3$$

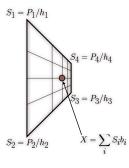
$$Q = \sum_i P_i a_i$$

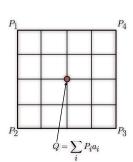
$$\sum_{i} P_{i}b_{i}/h_{i} = \left(\sum_{i} P_{i}a_{i}\right) / \left(\sum_{j} h_{j}a_{j}\right)$$

Independent of given vertex locations.

$$b_i/h_i = a_i/\left(\sum_j h_j a_j\right) \quad \forall i$$

Depth Distortion

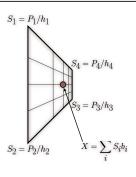


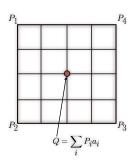


$$b_i/h_i = a_i/\left(\sum_j h_j a_j\right) \quad orall$$

Linear equations in the a_i .

$$\left(\sum_{j}h_{j}a_{j}\right)b_{i}/h_{i}-a_{i}=0\quad\forall i$$





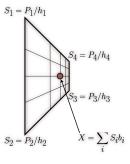
Linear equations in the $\it a_i$.

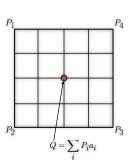
$$\left(\sum_{j} h_{j} a_{j}\right) b_{i} / h_{i} - a_{i} = 0 \quad \forall i$$

Not invertible so add some extra constraints.

$$\sum_{i} a_{i} = \sum_{i} b_{i} =$$

Depth Distortion





For a line: $a_1 = h_2 b_i / (b_1 h_2 + h_1 b_2)$

For a triangle: $a_1 = h_2 h_3 b_1 / (h_2 h_3 b_1 + h_1 h_3 b_2 + h_1 h_2 b_3)$

Obvious Permutations for other coefficients.