CS- I84: Computer Graphics

Lecture \#8: Projection

Prof. James O'Brien University of California, Berkeley
vaceposer 10

Screen Space

- May not really be a "screen"
- Image file
- Printer
- Other
- Little pixel details
- Sometimes odd
- Upside down
- Hexagonal

Screen Space

- Viewport is somewhere on screen
- You probably don't care where
- Window System likely manages this detail
- Sometimes you care exactly where
- Viewport has a size in pixels
- Sometimes you care (images, text, etc.)
- Sometimes you don't (using high-level library) \qquad

Screen Space

\qquad

Canonical View Space

- Canonical view region
- 2D: $[-1,-1]$ to $[+1,+1]$

\qquad

Canonical View Space

- Canonical view region
- 2D: [-1,-1] to [+1,+1]

From Shirley textbook.
(Image coordinates are up-side-down.)
$\left[\begin{array}{l}i \\ j \\ 1\end{array}\right]=\left[\begin{array}{ccc}\frac{n_{x}}{2} & 0 & \frac{n_{x}-1}{2} \\ 0 & \frac{-n_{y}}{2} & \frac{n_{y}-1}{2} \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}x \\ y \\ 1\end{array}\right]$
Remove minus for right-side-up

\square
\square
\square

Canonical View Space

- Canonical view region
- 2D: [-1,-1] to [+1,+1]
- Define arbitrary window and define objects
- Transform window to canonical region
- Do other things (we'll see clipping latter)
- Transform canonical to screen space
- Draw it.

Canonical View Space

World Coordinates
(Meters)

Canonical
Screen Space (Pixels)
\qquad
Note distortion issues...

Ray Generation vs. Projection

Viewing in ray tracing

- start with image point
- compute ray that projects to that point
- do this using geometry

Viewing by projection

- start with 3D point
- compute image point that it projects to
- do this using transforms

Inverse processes

- ray gen. computes the preimage of projection

	Linear Projection
- Projection onto a planar surface - Projection directions either • Converge to a point - Are paralle ((converge at infinity)	\square

Linear Projection

Orthographic Projection

- No foreshortening
- Parallel lines stay parallel

Poor depth cues

Orthographic Projection

	Canonical View Space
•Canonical view region	
•3D: $[-1,-1,-1]$ to $[+1,+1,+1]$	
- Assume looking down -Z axis	
• Recall that " Z is in your face"	

Orthographic Projection

\square
\square

Orthographic Projection

*Assume up is perpendicular to view.

Orthographic Projection

- Step I: translate center to origin

Orthographic Projection

- Step I: translate center to origin
- Step 2: rotate view to $\mathbf{- Z}$ and $\boldsymbol{u p}$ to $\mathbf{+ Y}$

Orthographic Projection

- Step I: translate center to origin
- Step 2: rotate view to $\mathbf{- Z}$ and $\mathbf{u p}$ to $\mathbf{+ Y}$
- Step 3: center view volume
\qquad
\qquad
\qquad
\square

Orthographic Projection

- Step 1: translate center to origin
- Step 2: rotate view to $\mathbf{- Z}$ and $\boldsymbol{u p}$ to $\mathbf{+ Y}$
- Step 3: center view volume
- Step 4: scale to canonical size \qquad

Orthographic Projection

- Step I: translate center to origin
- Step 2: rotate view to $\mathbf{- Z}$ and $\mathbf{u p}$ to $\mathbf{+ Y}$
- Step 3: center view volume
- Step 4: scale to canonical size

$$
\begin{aligned}
& \mathbf{M}=\underline{\mathbf{S} \cdot \mathbf{T}_{2} \cdot \mathbf{R} \cdot \mathbf{T}_{1}} \\
& \mathbf{M}=\mathbf{M}_{o} \cdot \mathbf{M}_{v}
\end{aligned}
$$

Perspective Projection

- Foreshortening: further objects appear smaller
- Some parallel line stay parallel, most don't
- Lines still look like lines
- Z ordering preserved (where we care)

\qquad

| Perspective Projection | |
| :--- | :--- | :--- |
| | |
| Pinhole a.k.a center of projection | |

Perspective Projection

Perspective Projection

- Vanishing points
- Depend on the scene
- Not intrinsic to camera

Perspective Projection

- Vanishing points
- Depend on the scene
- Not intrinsic to camera

\qquad
\qquad
\qquad
\qquad
\qquad

Perspective Projection

\qquad
(2)
\qquad
\qquad
Perspective Projection

	Perspective Projection
Step I:Translate center to origin	

Perspective Projection

- Step I:Translate center to origin
- Step 2: Rotate view to -Z, up to +Y \qquad

Perspective Projection

- Step I:Translate center to origin
- Step 2: Rotate view to -Z, up to $\mathbf{+ Y}$
- Step 3: Shear center-line to -Z axis

Perspective Projection

- Step I:Translate center to origin
- Step 2: Rotate view to -Z, up to +Y
- Step 3: Shear center-line to -Z axis
- Step 4: Perspective

\qquad

Perspective Projection

Step 4: Perspective

- Points at $z=-i$ stay at $z=-i$
- Points at $z=-f$ stay at $z=-f$
- Points at $z=0$ goto $z= \pm \infty$
- Points at $z=-\infty$ goto $z=-(i+f)$
- x and y values divided by $-z / i$
- Straight lines stay straight
- Depth ordering preserved in $[-i,-f]$
- Movement along lines distorted

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \frac{i+f}{i} & f \\
0 & 0 & \frac{-1}{i} & 0
\end{array}\right]
$$

	Perspective Projection

| Perspective Projection | |
| :--- | :--- | :--- |
| | |

	Perspective Projection	

Perspective Projection

Perspective Projection

- Step I:Translate center to orange
- Step 2: Rotate view to -Z, up to $\mathbf{+ Y}$
- Step 3: Shear center-line to -Z axis
- Step 4: Perspective
- Step 5: center view volume
- Step 6: scale to canonical size

\square

Perspective Projection

$\left.\begin{array}{l}\text { - Step 1:Translate center to orange } \\ \text { - Step 2: Rotate view to -Z } \text {, up to }+\mathbf{Y}\end{array}\right\} \mathbf{M}_{v}$

- Step 3: Shear center-line to $-\mathbf{Z}$ axis $\} \mathbf{M}_{p}$
- Step 5: center view volume
- Step 6: scale to canonical size

Perspective Projection

There are other ways to set up the projection matrix

- View plane at $z=0$ zero
- Looking down another axis
- etc...
- Functionally equivalent
\square

Vanishing Points

- Consider a ray:

$$
\mathbf{r}(t)=\mathbf{p}+t \mathbf{d}
$$

Vanishing Points

- Ignore \mathbf{Z} part of matrix
- \mathbf{X} and \mathbf{Y} will give location in image plane
- Assume image plane at $z=-i$

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\text { whatever } \\
0 & 0 & -1 & 0
\end{array}\right] \longrightarrow\left[\begin{array}{l}
I_{x} \\
I_{y} \\
I_{w}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

\square
\square
\square
\square

Vanishing Points

$$
\begin{gathered}
{\left[\begin{array}{l}
I_{x} \\
I_{y} \\
I_{w}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
-z
\end{array}\right]} \\
{\left[\begin{array}{l}
I_{x} / I_{w} \\
I_{y} / I_{w}
\end{array}\right]=\left[\begin{array}{l}
-x / z \\
-y / z
\end{array}\right]}
\end{gathered}
$$

Vanishing Points

- Assume

$$
\begin{aligned}
& d_{z}=-1 \\
& {\left[\begin{array}{l}
I_{x} / I_{w} \\
I_{y} / I_{w}
\end{array}\right]=\left[\begin{array}{l}
-x / z \\
-y / z
\end{array}\right]=\left[\begin{array}{l}
\frac{p_{x}+t d_{x}}{-p_{z}+t} \\
\frac{p_{y}+t d_{y}}{-p_{z}+t}
\end{array}\right] } \\
& \operatorname{Lim}_{t \rightarrow \pm \infty}=\left[\begin{array}{l}
d_{x} \\
d_{y}
\end{array}\right]
\end{aligned}
$$

Vanishing Points

$$
\operatorname{Lim}_{t \rightarrow \pm \infty}=\left[\begin{array}{l}
d_{x} \\
d_{y}
\end{array}\right]
$$

All lines in direction d converge to same point in the image plane -- the vanishing point
Every point in plane is a v.p. for some set of lines

- Lines parallel to image plane ($d_{z}=$) Ovanish at infinity

What's a horizon?

| Right Looks Wrong (Sometimes) |
| :--- | :--- | :--- |

| Strangeness | | |
| :---: | :---: | :---: | :---: |
| | | \square |

| Ray Picking | |
| :--- | :--- | :--- |
| Pick object by picking point on screen | \square |
| Compute ray from pixel coordinates. | \square |

Ray Picking

- Transform from World to Screen is:
- Inverse: $\quad\left[\begin{array}{l}I_{x} \\ I_{y} \\ I_{z} \\ I_{w}\end{array}\right]=\mathbf{M}\left[\begin{array}{l}W_{x} \\ W_{y} \\ W_{z} \\ W_{w}\end{array}\right]$
\qquad

What \mathbf{Z} value? $\left[\begin{array}{l}W_{x} \\ W_{y} \\ W_{z} \\ W_{w}\end{array}\right]=\mathbf{M}^{-1}\left[\begin{array}{l}I_{x} \\ I_{y} \\ I_{z} \\ I_{w}\end{array}\right]$

Depth Distortion

- Recall depth distortion from perspective
- Interpolating in screen space different than in world
- Ok, for shading (mostly)
- Bad for texture

Half way in world

\qquad

Depth Distortion

\qquad

Depth Distortion

We know the S_{i}, P_{i}, and b_{i}, but not the a_{i}.

Depth Distortion

Depth Distortion

Depth Distortion

Depth Distortion

locations.

$$
\sum_{i} P_{i} b_{i} / h_{i}=\left(\sum_{i} P_{i} a_{i}\right) /\left(\sum_{j} h_{j} a_{j}\right)
$$

$$
b_{i} / h_{i}=a_{i} /\left(\sum_{j} h_{j} a_{j}\right) \quad \forall i
$$

Depth Distortion

$$
b_{i} / h_{i}=a_{i} /\left(\sum_{j} h_{j} a_{j}\right) \quad \forall i
$$

Linear equations in the $a_{i} . \quad\left(\sum_{j} h_{j} a_{j}\right) b_{i} / h_{i}-a_{i}=0 \quad \forall i$

Depth Distortion

Linear equations in the a_{i}.

$$
\left(\sum_{j} h_{j} a_{j}\right) b_{i} / h_{i}-a_{i}=0 \quad \forall i
$$

Not invertible so add some extra constraints.

$$
\sum_{i} a_{i}=\sum_{i} b_{i}=1
$$

Depth Distortion

For a line: $\quad a_{1}=h_{2} b_{i} /\left(b_{1} h_{2}+h_{1} b_{2}\right)$
For a triangle: $a_{1}=h_{2} h_{3} b_{1} /\left(h_{2} h_{3} b_{1}+h_{1} h_{3} b_{2}+h_{1} h_{2} b_{3}\right)$
Obvious Permutations for other coefficients.

