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Today

• Transformations in 3D

• Rotations
• Matrices
• Euler angles
• Exponential maps
• Quaternions
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3D Transformations

• Generally, the extension from 2D to 3D is straightforward
• Vectors get longer by one
• Matrices get extra column and row
• SVD still works the same way
• Scale, Translation, and Shear all basically the same

• Rotations get interesting 
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Ã=

2

664

1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

3

775

Translations

For 2D

For 3D

Ã=

2

4
1 0 tx
0 1 ty
0 0 1

3
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Ã=

2

664

sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

3

775

Ã=

2

4
sx 0 0
0 sy 0
0 0 1

3

5 For 2D

For 3D

Scales

(Axis-aligned!)
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Shears

For 2D

For 3D

(Axis-aligned!)

Ã=

2

4
1 hxy 0
hyx 1 0
0 0 1

3

5

Ã=

2

664

1 hxy hxz 0
hyx 1 hyz 0
hzx hzy 1 0
0 0 0 1

3

775
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Shears

Ã=

2

664

1 hxy hxz 0
hyx 1 hyz 0
hzx hzy 1 0
0 0 0 1

3

775

Shears y into x
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Rotations
• 3D Rotations fundamentally more complex than in 2D

• 2D: amount of rotation
• 3D: amount and axis of rotation

-vs-

2D 3D
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Rotations
• Rotations still orthonormal

•  

• Preserve lengths and distance to origin

• 3D rotations DO NOT COMMUTE!

• Right-hand rule

• Unique matrices

Det(R) = 1 6=�1

DO NOT COMMUTE!
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Axis-aligned 3D Rotations
• 2D rotations implicitly rotate about a third out of plane 

axis
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Axis-aligned 3D Rotations

• 2D rotations implicitly rotate about a third out of plane 
axis

R=

cos(θ) �sin(θ)
sin(θ) cos(θ)

�
R=

2

4
cos(θ) �sin(θ) 0
sin(θ) cos(θ) 0
0 0 1

3

5

Note: looks same as R̃
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Axis-aligned 3D Rotations

R=

2

4
cos(θ) �sin(θ) 0
sin(θ) cos(θ) 0
0 0 1

3

5

R=

2

4
1 0 0
0 cos(θ) �sin(θ)
0 sin(θ) cos(θ)

3

5

R=

2

4
cos(θ) 0 sin(θ)
0 1 0

�sin(θ) 0 cos(θ)

3

5

x̂

ŷ

ẑ

ẑ

x̂

ŷ
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Axis-aligned 3D Rotations

R=

2

4
cos(θ) �sin(θ) 0
sin(θ) cos(θ) 0
0 0 1

3

5

R=

2

4
1 0 0
0 cos(θ) �sin(θ)
0 sin(θ) cos(θ)

3

5

R=

2

4
cos(θ) 0 sin(θ)
0 1 0

�sin(θ) 0 cos(θ)

3

5

x̂

ŷ

ẑ

“Z is in your face”

ẑ

x̂

ŷ
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Axis-aligned 3D Rotations

R=

2

4
cos(θ) �sin(θ) 0
sin(θ) cos(θ) 0
0 0 1

3

5

R=

2

4
1 0 0
0 cos(θ) �sin(θ)
0 sin(θ) cos(θ)

3

5

R=

2

4
cos(θ) 0 sin(θ)
0 1 0

�sin(θ) 0 cos(θ)

3

5

x̂

ŷ

ẑ

x̂

ŷ

ẑ
Also right handed “Zup”
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Axis-aligned 3D Rotations
• Also known as “direction-cosine” matrices

R=

2

4
cos(θ) �sin(θ) 0
sin(θ) cos(θ) 0
0 0 1

3

5

R=

2

4
1 0 0
0 cos(θ) �sin(θ)
0 sin(θ) cos(θ)

3

5 R=

2

4
cos(θ) 0 sin(θ)
0 1 0

�sin(θ) 0 cos(θ)

3

5

ẑ

x̂ ŷ
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Arbitrary Rotations

• Can be built from axis-aligned matrices:

• Result due to Euler... hence called 

  Euler Angles

• Easy to store in vector

• But NOT a vector.

R= rot(x,y,z)

R= Rẑ ·Rŷ ·Rx̂
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Arbitrary Rotations

R= Rẑ ·Rŷ ·Rx̂

R

RẑRŷRx̂
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Arbitrary Rotations

• Allows tumbling

• Euler angles are non-unique

• Gimbal-lock

• Moving -vs- fixed axes
• Reverse of each other
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Exponential Maps
• Direct representation of arbitrary rotation

• AKA: axis-angle, angular displacement vector

• Rotate    degrees about some axis 

• Encode     by length of vector

θ

θ

θ= |r| r̂
θ

19

Exponential Maps
• Given vector     , how to get matrix

• Method from text:
1. rotate about x axis to put r into the x-y plane
2. rotate about z axis align r with the x axis
3. rotate    degrees about x axis
4. undo #2 and then #1
5. composite together 

r R

θ
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Exponential Maps

• Vector expressing a point has two parts
•       does not change
•       rotates like a 2D point

x
r

x

⊥x ⊥xr

⊥x
x
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Exponential Maps

θ

x

x0

�x? = r̂⇥ (r̂⇥x) x?

x
r

x

⊥x ⊥xr

x` = r̂⇥x

�x?cos(θ)

x` sin(θ)
x0 = x|| +x` sin(θ)+x?cos(θ)
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x0 = r̂(r̂ ·x)
+sin(θ)(r̂⇥x)
�cos(θ)(r̂⇥ (r̂⇥x))

Exponential Maps

• Rodriguez Formula

x

r

x

!x
!x

r

Actually a minor variation ...

22

x0 = r̂(r̂ ·x)
+sin(θ)(r̂⇥x)
�cos(θ)(r̂⇥ (r̂⇥x))

Exponential Maps

• Rodriguez Formula

x

r

x

!x
!x

r

Actually a minor variation ...

Linear in x
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Exponential Maps

• Building the matrix

x0 = ((r̂r̂t)+ sin(θ)(r̂⇥)� cos(θ)(r̂⇥)(r̂⇥))x

(r̂⇥) =

2

4
0 �r̂z r̂y
r̂z 0 �r̂x
�r̂y r̂x 0

3

5

Antisymmetric matrix
(a⇥)b= a⇥b
Easy to verify by expansion
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Exponential Maps

• Allows tumbling

• No gimbal-lock!

• Orientations are space within π-radius ball

• Nearly unique representation 

• Singularities on shells at 2π
• Nice for interpolation
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ex = 1+
x
1!

+
x2

2!
+
x3

3!
+ · · ·

Exponential Maps
• Why exponential?

• Recall series expansion of ex
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• Why exponential?
• Recall series expansion of 
• Euler : what happens if you put in     for

eiθ = 1+
iθ
1!

+
�θ2

2!
+
�iθ3

3!
+
θ4

4!
+ · · ·

Exponential Maps

ex
iθ x

=
✓
1+

�θ2

2!
+
θ4

4!
+ · · ·

◆
+ i

✓
θ
1!

+
�θ3

3!
+ · · ·

◆

= cos(θ)+ isin(θ)
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• Why exponential?

Exponential Maps

e(r̂⇥)θ = I+ (r̂⇥)θ
1!

+
(r̂⇥)2θ2

2!
+

(r̂⇥)3θ3

3!
+

(r̂⇥)4θ4

4!
+ · · ·

e(r̂⇥)θ = I+ (r̂⇥)θ
1!

+
(r̂⇥)2θ2

2!
+
�(r̂⇥)θ3

3!
+
�(r̂⇥)2θ4

4!
+ · · ·

(r̂⇥)3 =�(r̂⇥)But notice that:
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Exponential Maps

e(r̂⇥)θ = I+ (r̂⇥)θ
1!

+
(r̂⇥)2θ2

2!
+
�(r̂⇥)θ3

3!
+
�(r̂⇥)2θ4

4!
+ · · ·

e(r̂⇥)θ = (r̂⇥)
✓
θ
1!
� θ3

3!
+ · · ·

◆
+ I+(r̂⇥)2

✓
+
θ2

2!
� θ4

4!
+ · · ·

◆

e(r̂⇥)θ = (r̂⇥)sin(θ)+ I+(r̂⇥)2(1� cos(θ))
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Quaternions

• More popular than exponential maps 

• Natural extension of 

• Due to Hamilton (1843)
• Interesting history 
• Involves “hermaphroditic monsters”

eiθ = cos(θ)+ isin(θ)

30

i2 = j2 = k2 =�1

Quaternions
• Uber-Complex Numbers

q = (z1,z2,z3,s) = (z,s)
q = iz1+ jz2+ kz3+ s

i j = k ji=�k
jk = i k j =�i
ki= j ik =� j
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||q||2 = z · z+ s2 = q · q
⇤

Quaternions
• Multiplication natural consequence of defn. 

• Conjugate

• Magnitude

q · p = (zqsp+ zpsq+ zp⇥ zq , spsq� zp · zq)

q
⇤ = (�z,s)
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Quaternions
• Vectors as quaternions

• Rotations as quaternions

• Rotating a vector

• Composing rotations

v = (v,0)

r = (r̂sinθ
2
,cos

θ
2
)

x

0 = r · x · r

⇤

r = r1 · r2 Compare to Exp. Map
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Quaternions

• No tumbling

• No gimbal-lock

• Orientations are “double unique”

• Surface of a 3-sphere in 4D

• Nice for interpolation

||r|| = 1

Interpolation

34
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Rotation Matrices
• Eigen system 

• One real eigenvalue 
• Real axis is axis of rotation
• Imaginary values are 2D rotation as complex number

• Logarithmic formula 

θ= cos�1
✓
Tr(R)�1

2

◆

(r̂⇥) = ln(R) =
θ

2sinθ
(R�RT)

Similar formulae as for exponential...
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Rotation Matrices
• Consider:

• Columns are coordinate axes after                                
(true for general matrices)

• Rows are original axes in original system                         
(not true for general matrices)
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Scene Graphs

• Draw scene with pre-and-post-order traversal
• Apply node, draw children, undo node if applicable

• Nodes can do pretty much anything
• Geometry, transformations, groups, color, switch, scripts, etc.
• Node types are application/implementation specific

• Requires a stack to implement “undo” post children

• Nodes can cache their children

• Instances make it a DAG, not strictly a tree

• Will use these trees later for bounding box trees
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Note:

• Rotation stuff in the book is a bit weak... luckily you have 
these nice slides!
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