CS-184: Computer Graphics

Lecture #4: 2D Transformations

Prof. James O'Brien University of California, Berkeley

V2009-F-04-I

Today

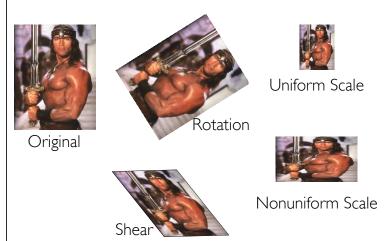
- 2D Transformations
- "Primitive" Operations
 - Scale, Rotate, Shear, Flip, Translate
- Homogenous Coordinates
- SVD
- Start thinking about rotations...

Transformation: An operation that changes one configuration into another For images, shapes, etc. A geometric transformation maps positions that define the object to other positions Linear transformation means the transformation is defined by a linear function... which is what matrices are good for.

Some Examples

Original

Some Examples



Images from Conan The Destroyer, 1984

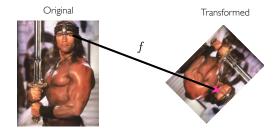
Mapping Function

 $f(\mathbf{p}) = \mathbf{p'}$ Maps points in original image $\mathbf{p} = (\mathbf{x}, \mathbf{y})$ to point in transformed image $\mathbf{p'} = (\mathbf{x'}, \mathbf{y'})$

Transformed

Mapping Function

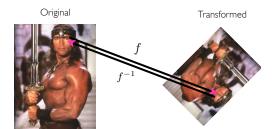
 $f(\mathbf{p}) = \mathbf{p'}$ Maps points in original image $\mathbf{p} = (\mathbf{x}, \mathbf{y})$ to point in transformed image $\mathbf{p'} = (\mathbf{x'}, \mathbf{y'})$



6

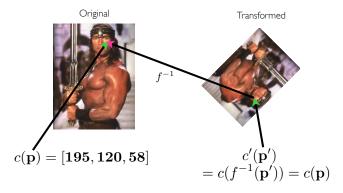
Mapping Function

 $f(\mathbf{p}) = \mathbf{p'}$ Maps points in original image $\mathbf{p} = (\mathbf{x}, \mathbf{y})$ to point in transformed image $\mathbf{p'} = (\mathbf{x'}, \mathbf{y'})$



Mapping Function

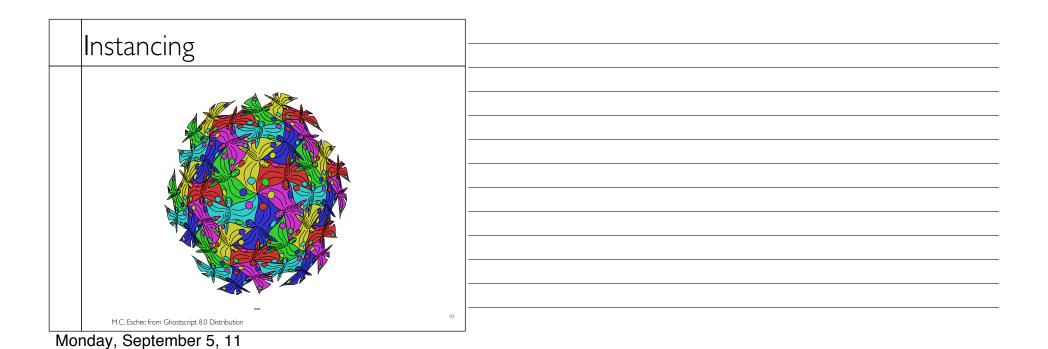
$$f(\mathbf{p}) = \mathbf{p'}$$
 Maps points in original image $\mathbf{p} = (\mathbf{x}, \mathbf{y})$ to point in transformed image $\mathbf{p'} = (\mathbf{x'}, \mathbf{y'})$

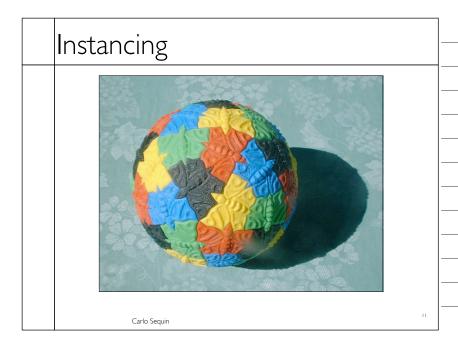


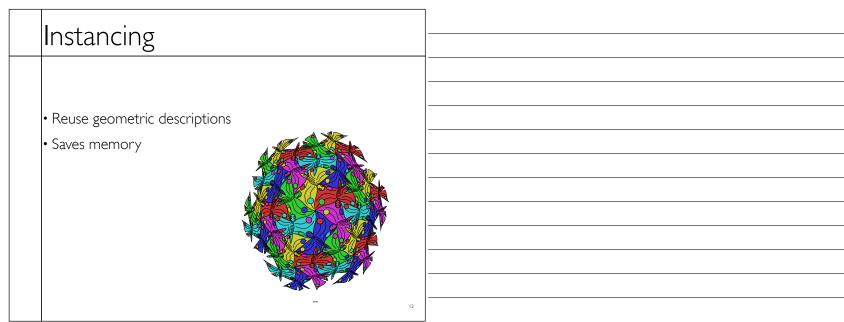
Linear -vs- Nonlinear

Nonlinear (swirl)
Linear (shear)

Geometric -vs- Color Space Color Space Transform (edge finding) Linear Geometric (flip)

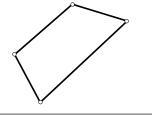






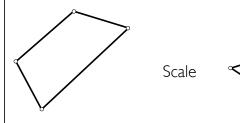
Linear is Linear

- Polygons defined by points
- Edges defined by interpolation between two points
- Interior defined by interpolation between all points
- Linear interpolation



Linear is Linear

- Composing two linear function is still linear
- Transform polygon by transforming vertices



Linear is Linear

- Composing two linear function is still linear
- Transform polygon by transforming vertices

$$f(x) = a + bx$$
 $g(f) = c + df$

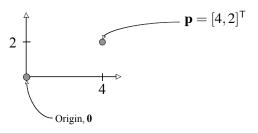
$$g(x) = c + df(x) = c + ad + bdx$$

$$g(x) = a' + b'x$$

15

Points in Space

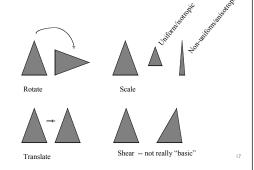
- Represent point in space by vector in R^n
- Relative to some origin!
- Relative to some coordinate axes!
- Later we'll add something extra...



Monday, September 5, 11

Basic Transformations

- Basic transforms are: rotate, scale, and translate
- Shear is a composite transformation!



Linear Functions in 2D

$$x' = f(x,y) = c_1 + c_2x + c_3y$$

 $y' = f(x,y) = d_1 + d_2x + d_3y$

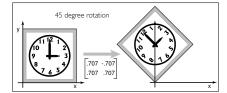
$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} t_x \\ t_y \end{bmatrix} + \begin{bmatrix} M_{xx} M_{xy} \\ M_{yx} M_{yy} \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\mathbf{x}' = \mathbf{t} + \mathbf{M} \cdot \mathbf{x}$$

Rotations

$$\mathbf{p'} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

Rotate



Rotations

- Rotations are positive counter-clockwise
- Consistent w/ right-hand rule
- Don't be different...
- Note:
- rotate by zero degrees give identity • rotations are modulo 360 (or 2π)

Rotations

- Preserve lengths and distance to origin
- Rotation matrices are orthonormal
- $\cdot \operatorname{Det}(\mathbf{R}) = 1 \neq -1$
- In 2D rotations commute...
- But in 3D they won't!

21

Scales $\mathbf{p'} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \mathbf{p}$ Scale

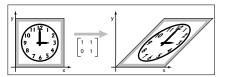
Scales

- Diagonal matrices
- Diagonal parts are scale in X and scale in Y directions
- Negative values flip
- Two negatives make a positive (180 deg. rotation)
- Really, axis-aligned scales

Shears

$$\mathbf{p'} = \begin{bmatrix} 1 & H_{yx} \\ H_{xy} & 1 \end{bmatrix}$$

Chaor



	Shears	
	JI ICai 5	
	Shears are not really primitive transforms Related to non-axis-aligned scales More shortly	
	25	

Translation

• This is the not-so-useful way:

$$\mathbf{p'} = \mathbf{p} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

Translate

Note that its not like the others.

Arbitrary Matrices

• For everything but translations we have:

$$\mathbf{x}' = \mathbf{A} \cdot \mathbf{x}$$

- Soon, translations will be assimilated as well
- What does an arbitrary matrix mean?

27

Singular Value Decomposition

ullet For any matrix, $oldsymbol{A}$, we can write SVD:

$$A = QSR^T$$

where \boldsymbol{Q} and \boldsymbol{R} are orthonormal and \boldsymbol{S} is diagonal

• Can also write Polar Decomposition

$$\mathbf{A} = \mathbf{P}\mathbf{R}\mathbf{S}\mathbf{R}^\mathsf{T}$$

where ${f P}$ is also orthonormal

$$\mathbf{P} = \mathbf{Q}\mathbf{R}^\mathsf{T}$$

Decomposing Matrices

- We can force \mathbf{P} and \mathbf{R} to have $\mathbf{Det}=1$ so they are rotations
- Any matrix is now:
- Rotation:Rotation:Scale:Rotation
- See, shear is just a mix of rotations and scales

29

Composition

• Matrix multiplication composites matrices

$$p' = BAp$$

"Apply ${\bf A}$ to ${\bf p}$ and then apply ${\bf B}$ to that result."

$$p' = B(Ap) = (BA)p = Cp$$

- Several translations composted to one
- Translations still left out...

$$p' = B(Ap + t) = BAp + Bt = Cp + u$$

Composition

• Matrix multiplication composites matrices

$$p' = BAp$$

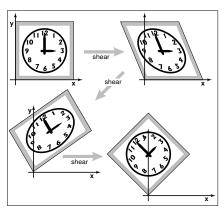
"Apply \boldsymbol{A} to \boldsymbol{p} and then apply \boldsymbol{B} to that result."

$$p' = B(Ap) = (BA)p = Cp$$

- $p' = B(Ap) = (BA)p = Cp \\ \bullet \text{ Several translations composted to one}$
- Translations still left out...

$$p' = B(Ap + t) = p + Bt = Cp + u$$

Composition



Transformations built up from others

SVD builds from scale and rotations

Also build other ways

i.e. 45 deg rotation built from shears

Homogeneous Coordiantes

- Move to one higher dimensional space
- Append a 1 at the end of the vectors

$$\mathbf{p} = \begin{bmatrix} p_x \\ p_y \end{bmatrix} \qquad \widetilde{\mathbf{p}} = \begin{bmatrix} p_x \\ p_y \\ 1 \end{bmatrix}$$

· For directions the extra coordinate is a zero

32

Homogeneous Translation

$$\widetilde{\mathbf{p}}' = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ 1 \end{bmatrix}$$

$$\widetilde{\mathbf{p}}' = \widetilde{\mathbf{A}}\widetilde{\mathbf{p}}$$

The tildes are for clarity to distinguish homogenized from non-homogenized vectors.

Homogeneous Others

$$\widetilde{\mathbf{A}} = \begin{bmatrix} \mathbf{A} & 0 \\ \mathbf{A} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Now everything looks the same... Hence the term "homogenized!"

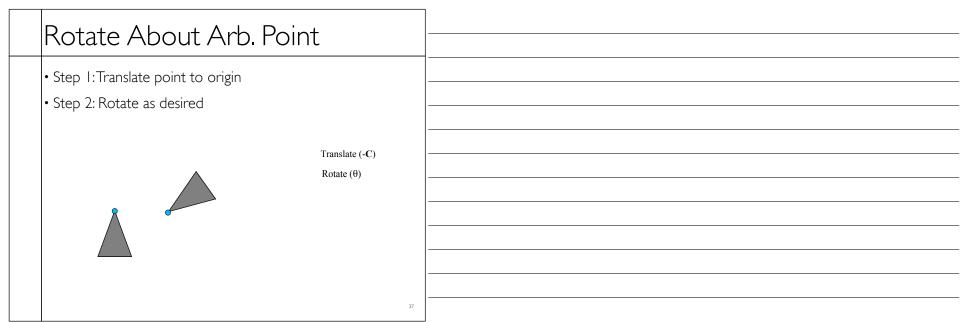
34

Compositing Matrices

- Rotations and scales always about the origin
- How to rotate/scale about another point?

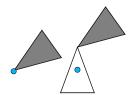
-VS

Rotate About Arb. Point • Step I:Translate point to origin Translate (-C)



Rotate About Arb. Point

- Step 1:Translate point to origin
- Step 2: Rotate as desired
- Step 3: Put back where it was



Translate (-C)

Rotate (θ)

Translate (C)

38

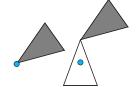
Rotate About Arb. Point

- Step I:Translate point to origin
- Step 2: Rotate as desired
- Step 3: Put back where it was

Translate (-C)

Rotate (θ)

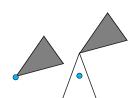
Translate (C)



 $\widetilde{p}' = (-T)RT\widetilde{p} = A\widetilde{p}$

Rotate About Arb. Point

- Step I:Translate point to origin
- Step 2: Rotate as desired
- Step 3: Put back where it was



 $Translate \ (\textbf{-C})$

Rotate (θ)

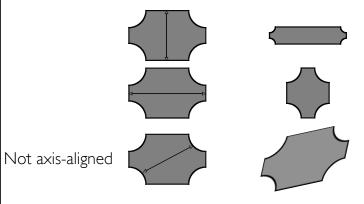
Translate (C)

$$\widetilde{p}' = (-T)RT\widetilde{p} = A\widetilde{p}$$

Don't negate the 1...

Scale About Arb. Axis

• Diagonal matrices scale about coordinate axes only:



Scale About Arb. Axis

• Step 1:Translate axis to origin

40

Scale About Arb. Axis

- Step 1:Translate axis to origin
- Step 2: Rotate axis to align with one of the coordinate axes

Scale About Arb. Axis

- Step 1:Translate axis to origin
- Step 2: Rotate axis to align with one of the coordinate axes
- Step 3: Scale as desired

42

Scale About Arb. Axis

- Step 1:Translate axis to origin
- Step 2: Rotate axis to align with one of the coordinate axes
- Step 3: Scale as desired
- Steps 4&5: Undo 2 and 1 (reverse order)

Monday, September 5, 11

	N 1 1 1	1
Order	Matters	ļ

• The order that matrices appear in matters

$$\mathbf{A} \cdot \mathbf{B} \neq \mathbf{B} \mathbf{A}$$

- Some special cases work, but they are special
- But matrices are associative

$$(A\cdot B)\cdot C = A\cdot (B\cdot C)$$

 Think about efficiency when you have many points to transform...

44

Matrix Inverses

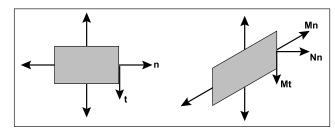
- ullet In general: ${f A}^{-1}$ undoes effect of ${f A}$
- Special cases:
- Translation: negate t_{x} and t_{y}
- Rotation: transpose
- Scale: invert diagonal (axis-aligned scales)
- Others:
- Invert matrix
- Invert SVD matrices

Point Vectors / Direction Vectors

- Points in space have a 1 for the "w" coordinate
- What should we have for $\mathbf{a} \mathbf{b}$?
- $\cdot w = 0$
- Directions not the same as positions
- Difference of positions is a direction
- Position + direction is a position
- Direction + direction is a direction
- Position + position is nonsense

46

Somethings Require Care

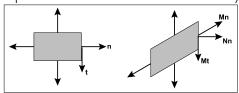


For example normals do not transform normally

$$\mathbf{M}(\mathbf{a} \times \mathbf{b}) \neq (\mathbf{M}\mathbf{a}) \times (\mathbf{M}\mathbf{b})$$

Some Things Require Care

For example normals transform abnormally

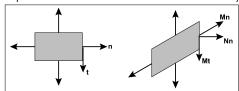


$$\mathbf{n^Tt} = \mathbf{0} \quad \mathbf{t_M} = \mathbf{Mt} \quad \text{ find } \mathbf{N} \text{ such that } \mathbf{n_N^Tt_M} = \mathbf{0}$$

48

Some Things Require Care

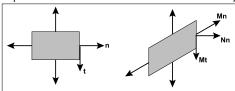
For example normals transform abnormally



$$\mathbf{n^Tt} = 0$$
 $\mathbf{t_M} = \mathbf{Mt}$ find \mathbf{N} such that $\mathbf{n_N^Tt_M} = 0$
$$\mathbf{n^Tt} = \mathbf{n^TIt} = \mathbf{n^TM}^{-1}\mathbf{Mt} = 0$$

Some Things Require Care

For example normals transform abnormally



$$\mathbf{n^Tt} = 0$$
 $\mathbf{t_M} = \mathbf{Mt}$ find \mathbf{N} such that $\mathbf{n_N^Tt_M} = 0$

$$\mathbf{n^Tt} = \mathbf{n^TIt} = \mathbf{n^TM^{-1}Mt} = 0$$

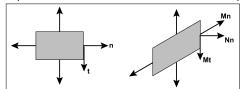
$$(\mathbf{n^TM^{-1}})\mathbf{t_M} = 0$$

$$\mathbf{n_N^T} = \mathbf{n^TM^{-1}}$$

50

Some Things Require Care

For example normals transform abnormally



$$\begin{split} \mathbf{n^Tt} &= \mathbf{0} \quad \mathbf{t_M} = \mathbf{Mt} \quad \text{ find } \quad \mathbf{N} \text{ such that } \quad \mathbf{n_N^Tt_M} = \mathbf{0} \\ \mathbf{n^Tt} &= \mathbf{n^TIt} = \mathbf{n^TM^{-1}Mt} = \mathbf{0} \\ & (\mathbf{n^TM^{-1}})\mathbf{t_M} = \mathbf{0} \\ & \mathbf{n_N^T} = \mathbf{n^TM^{-1}} \\ & \mathbf{n_N} = (\mathbf{n^TM^{-1}})^T \\ & \mathbf{N} = (\mathbf{M^{-1}})^T \quad \text{See book for details} \end{split}$$

Suggested Reading	
Fundamentals of Computer Graphics by Pete Shirley • Chapter 6 • And re-read chapter 5 if your linear algebra is rusty!	
52	