CS-1 84: Computer Graphics

Lecture \#3: Shading

Prof. James O'Brien University of California, Berkeley
volifen:10

	Announcements	
- Assignment I: due Friday, Sept 2		
- Assignment 2: due Tuesday, Sept 6		
- Assignment 3: due Monday, Sept 19	\square	

Wednesday, August 31, 11

Wednesday, August 31, 11

| LOCal Shading |
| :--- | :--- |
| • Examples of non-local phenomena |
| • Shadows |
| • Reflections |
| • Refraction |
| • Indirect lighting |

Wednesday, August 31, 11

Wednesday, August 31, 11

| | Obtaining BRDFS |
| :--- | :--- | :--- |
| | Measure from real materials
 - Computer simulation
 - Simple model + complex geometry
 - Derive model by analysis
 - Make something up |

Wednesday, August 31, 11

| | Beyond BRDFS |
| :--- | :--- | :--- |
| | The BRDF model does not capture everything
 \cdot e.g. Subsurface scattering (BSSRDF) |

\square
\square
\square

Wednesday, August 31, 11

Wednesday, August 31, 11

Wednesday, August 31, 11

| Diffuse Component |
| :--- | :--- | :--- |
| Plot light leaving in a given direction: |

| Diffuse Component | |
| :--- | :--- | :--- |
| - Plot light leaving in a given direction: | |

Wednesday, August 31, 11

	Specular Component
• Specular component is a mirror-like reflection	
• Phong Illumination Model	
• A reasonable approximation for some surfaces	
• Fairly cheap to compute	
• Depends on view direction	

Specular Component

Wednesday, August 31, 11

| | Specular Component |
| :--- | :--- | :--- |
| | |

Wednesday, August 31, 11

Wednesday, August 31, 11
Specular Component

| | Specular Component |
| :--- | :--- | :--- |
| - Specular exponent sometimes called "roughness" | |

Wednesday, August 31, 11

| | Ambient Term |
| :--- | :--- | :--- |
| | |
| - Really, its a cheap hack | |
| - Accounts for "ambient, omnidirectional light" | |
| - Without it everything looks like it's in space | |

Wednesday, August 31, 11

Anisotropy		
		\square
		\square

	Metal -vs- Plastic	
		\square

Wednesday, August 31, 11

	Metal -vs- Plastic	

	Other Color Effects	
		\square

Wednesday, August 31, 11

	Measured BRDFs
BRDFs for automotive paint	
Wednesday, August 31, 11	

Wednesday, August 31, 11

Wednesday, August 31, 11

Direction -vs- Point Lights

- For a point light, the light direction changes over the surface
- For "distant" light, the direction is constant
- Similar for orthographic/perspective viewer
${ }^{34}$

Wednesday, August 31, 11
Spot and Other Lights

Wednesday, August 31, 11

	Surface Normals
- The normal vector at a point on a surface is perpendicular	
to all surface tangent vectors	
- For triangles normal given by right-handed cross product	
\square	

Wednesday, August 31, 11

| | Flat Shading |
| :--- | :--- | :--- |
| | |

	Smooth Shading
- Compute "average" normal at vertices	
- Interpolate across polygons	
- Use threshold for "sharp" edges	
• Vertex may have different normals for each face	

Wednesday, August 31, 11

Wednesday, August 31, 11

| Phong Shading |
| :--- | :--- | :--- |
| - Compute shading at each pixel
 - Interpolate normals from vertices
 - Pros: looks smooth, better speculars
 - Cons: expensive |

