CS-184: Computer Graphics

Lecture #3: Shading

Prof. James O'Brien University of California, Berkeley

V2011-F-03-

Announcements

- Assignment 1: due Friday, Sept 2
- Assignment 2: due Tuesday, Sept 6
- Assignment 3: due Monday, Sept 19

Local Illumination & Shading The BRDF Simple diffuse and specular approximations Shading interpolation: flat, Gouraud, Phong Some miscellaneous tricks

Local Shading • Local: consider in isolation • 1 light • 1 surface • The viewer • Recall: lighting is linear • Almost always...

Local Shading • Local: consider in isolation • 1 light • 1 surface • The viewer • Recall: lighting is linear • Almost always...

- Examples of non-local phenomena - Shadows - Reflections - Refraction - Indirect lighting

The BRDF

- The **B**i-directional **R**eflectance **D**istribution **F**unction
- Given
- Surface material

$$\rho = \rho(\theta_V, \theta_L)$$

Incoming light direction

$$= \rho(\mathbf{v}, \mathbf{l}, \mathbf{n})$$

- Direction of viewer
- Orientation of surface
- Return:
- fraction of light that reaches the viewer
- We'll worry about physical units later...

6

The BRDF

- Frequency dependent
 - Typically use separate RGB functions
 - Does not work perfectly
 - Better:

$$ho =
ho(heta_V, heta_L, \lambda_{ ext{in}}, \lambda_{ ext{out}})$$

Obtaining BRDFs

• Measure from real materials

Images from Marc Levoy

Obtaining BRDFs

- Measure from real materials
- Computer simulation
- Simple model + complex geometry
- Derive model by analysis
- Make something up

.

Beyond BRDFs

- The BRDF model does not capture everything
- e.g. Subsurface scattering (BSSRDF)

Images from Jensen et. al, SIGGRAPH 2001

10

Beyond BRDFs

- The BRDF model does not capture everything
- e.g. Inter-frequency interactions

 $ho =
ho(heta_V, heta_L, \lambda_{ ext{in}}, \lambda_{ ext{out}})$ This version would work....

A Simple Model

- Approximate BRDF as sum of
- A diffuse component
- A specular component
- A "ambient" term

Diffuse Component

- Lambert's Law
- Intensity of reflected light proportional to cosine of angle between surface and incoming light direction
- Applies to "diffuse," "Lambertian," or "matte" surfaces
- Independent of viewing angle
- Use as a component of non-Lambertian surfaces

Diffuse Comp	onent
$k_d I(\hat{\mathbf{l}} \cdot \hat{\mathbf{n}})$	Comment about two-side lighting in text is wrong
$\max(k_d I(\hat{\mathbf{l}} \cdot \hat{\mathbf{n}}),$	0)

Diffuse Component

• Plot light leaving in a given direction:

• Plot light leaving from each point on surface

Diffuse Component • Plot light leaving in a given direction: • Plot light leaving from each point on surface

Diffuse Component

• Plot light leaving in a given direction:

• Plot light leaving from each point on surface

Specular Component

- Specular component is a mirror-like reflection
- Phong Illumination Model
 - A reasonable approximation for some surfaces
 - Fairly cheap to compute
- Depends on view direction

Specular Component

 $k_s I(\hat{\mathbf{r}} \cdot \hat{\mathbf{v}})^p$ $k_s I \max(\hat{\mathbf{r}} \cdot \hat{\mathbf{v}}, 0)^p$

Specular Component

Computing the reflected direction

$$\hat{\mathbf{r}} = -\hat{\mathbf{l}} + 2(\hat{\mathbf{l}} \cdot \hat{\mathbf{n}})\hat{\mathbf{n}}$$

18

Specular Component

• "Half-angle" approximation for specular

$$\hat{\mathbf{h}} = \frac{\hat{\mathbf{l}} + \hat{\mathbf{v}}}{||\hat{\mathbf{l}} + \hat{\mathbf{v}}||}$$

different specular term $k_s I(\hat{\mathbf{h}}\cdot\hat{\mathbf{n}})^p$

*Don't use half-angle approximation in your assignment!

Specular Component • Plot light leaving in a given direction: • Plot light leaving from each point on surface

Specular Component

• Plot light leaving in a given direction:

• Plot light leaving from each point on surface

Specular Component

• Plot light leaving in a given direction:

• Plot light leaving from each point on surface

20

Specular Component

• Specular exponent sometimes called "roughness"

Wednesday, August 31, 11

Ambient Term

- Really, its a cheap hack
- Accounts for "ambient, omnidirectional light"
- Without it everything looks like it's in space

22

Summing the Parts

 $R = k_a I + k_d I \max(\hat{\mathbf{l}} \cdot \hat{\mathbf{n}}, 0) + k_s I \max(\hat{\mathbf{r}} \cdot \hat{\mathbf{v}}, 0)^p$

- Recall that the k_2 are by wavelength
 - RGB in practice
- Sum over all lights

Other Color Effects

Measured BRDFs

BRDFs for automotive paint

Images from Cornell University Program of Computer Graphics

Measured BRDFs

BRDFs for aerosol spray paint

Images from Cornell University Program of Computer Graphics

30

Measured BRDFs

BRDFs for house paint

Images from Cornell University Program of Computer Graphics

Measured BRDFs

BRDFs for lucite sheet

Images from Cornell University Program of Computer Graphics

32

Details Beget Realism

• The "computer generated" look is often due to a lack of fine/subtle details... a lack of richness.

From bustledress.com

Direction -vs- Point Lights

- For a point light, the light direction changes over the surface
- For "distant" light, the direction is constant
- Similar for orthographic/perspective viewer

34

Falloff

- ullet Physically correct: $1/r^2$ light intensify falloff
- Tends to look bad (why?)
- Not used in practice
- ullet Sometimes compromise of 1/r used

Other calculations for useful effects Spot light Only light certain objects Negative lights etc.

Surface Normals • The normal vector at a point on a surface is perpendicular to all surface tangent vectors • For triangles normal given by right-handed cross product

Flat Shading

- Use constant normal for each triangle (polygon)
- Polygon objects don't look smooth
- Faceted appearance very noticeable, especially at specular highlights
- Recall mach bands...

Smooth Shading

- Compute "average" normal at vertices
- Interpolate across polygons
- Use threshold for "sharp" edges
- Vertex may have different normals for each face

Smooth Shading

Gouraud Shading

- Compute shading at each vertex
- Interpolate colors from vertices
- Pros: fast and easy, looks smooth
- Cons: terrible for specular reflections

Flat

Note: Gouraud was hardware rendered...

Phong Shading • Compute shading at each pixel • Interpolate normals from vertices • Pros: looks smooth, better speculars • Cons: expensive Gouraud Phong Note: Gouraud was hardware rendered...