Today

* Forward kinematics
* Inverse kinematics
 * Pin joints
 * Ball joints
 * Prismatic joints
Forward Kinematics

- Articulated skeleton
 - Topology (what's connected to what)
 - Geometric relations from joints
 - Independent of display geometry
 - Tree structure
 - Loop joints break “tree-ness”

Forward Kinematics

- Root body
 - Position set by “global” transformation
 - Root joint
 - Position
 - Rotation
 - Other bodies relative to root
 - *Inboard* toward the root
 - *Outboard* away from root

Sunday, November 15, 2009
Forward Kinematics

- A joint
 - Joint's inboard body
 - Joint's outboard body

- A body
 - Body's inboard joint
 - Body's outboard joint
 - May have several outboard joints
Forward Kinematics

- A body
 - Body's inboard joint
 - Body's outboard joint
 - May have several outboard joints
 - Body's parent
 - Body's child
 - May have several children

<table>
<thead>
<tr>
<th>Interior joints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typically not 6 DOF joints</td>
</tr>
<tr>
<td>Pin - rotate about one axis</td>
</tr>
<tr>
<td>Ball - arbitrary rotation</td>
</tr>
<tr>
<td>Prism - translation along one axis</td>
</tr>
</tbody>
</table>
Forward Kinematics

- Pin Joints
 - Translate inboard joint to local origin
 - Apply rotation about axis
 - Translate origin to location of joint on outboard body

Forward Kinematics

- Ball Joints
 - Translate inboard joint to local origin
 - Apply rotation about arbitrary axis
 - Translate origin to location of joint on outboard body

Sunday, November 15, 2009
Forward Kinematics

• Prismatic Joints
 • Translate inboard joint to local origin
 • Translate along axis
 • Translate origin to location of joint on outboard body

Forward Kinematics

• Composite transformations up the hierarchy
Forward Kinematics

- Composite transformations up the hierarchy
Forward Kinematics

• Composite transformations up the hierarchy
Inverse Kinematics

- Given
 - Root transformation
 - Initial configuration
 - Desired end point location

- Find
 - Interior parameter settings
Inverse Kinematics

• A simple two segment arm in 2D

\[
\begin{align*}
 p_z &= l_1 \cos(\theta_1) + l_2 \cos(\theta_1 + \theta_2) \\
 p_x &= l_1 \sin(\theta_1) + l_2 \sin(\theta_1 + \theta_2)
\end{align*}
\]

In逆Kinematics

• Direct IK: solve for the parameters

\[
\begin{align*}
 \theta_2 &= \cos^{-1} \left(\frac{p_z^2 + p_x^2 - l_1^2 - l_2^2}{2l_1l_2} \right) \\
 \theta_1 &= \frac{-p_z l_2 \sin(\theta_2) + p_x (l_1 + l_2 \cos(\theta_2))}{p_x l_2 \sin(\theta_2) + p_z (l_1 + l_2 \cos(\theta_2))}
\end{align*}
\]

Sunday, November 15, 2009
Inverse Kinematics

• Why is the problem hard?
 • Multiple solutions separated in configuration space

Sunday, November 15, 2009
Inverse Kinematics

• Why is the problem hard?
 • Solutions may not always exist

Numerical Solution

• Start in some initial configuration
• Define an error metric (e.g. goal pos - current pos)
• Compute Jacobian of error w.r.t. inputs
• Apply Newton's method (or other procedure)
• Iterate...
Inverse Kinematics

- Recall simple two segment arm:

\[
\begin{align*}
p_x &= l_1 \sin(\theta_1) + l_2 \sin(\theta_1 + \theta_2) \\
p_z &= l_1 \cos(\theta_1) + l_2 \cos(\theta_1 + \theta_2)
\end{align*}
\]

Inverse Kinematics

- We can write of the derivatives:

\[
\begin{align*}
\frac{\partial p_x}{\partial \theta_1} &= l_1 \cos(\theta_1) + l_2 \cos(\theta_1 + \theta_2) \\
\frac{\partial p_z}{\partial \theta_1} &= -l_1 \sin(\theta_1) - l_2 \sin(\theta_1 + \theta_2) \\
\frac{\partial p_x}{\partial \theta_2} &= -l_2 \sin(\theta_1 + \theta_2) \\
\frac{\partial p_z}{\partial \theta_2} &= +l_2 \cos(\theta_1 + \theta_2)
\end{align*}
\]

Sunday, November 15, 2009
Inverse Kinematics

Direction in Config. Space
\[\begin{align*}
\theta_1 &= c_1 \theta_* \\
\theta_2 &= c_2 \theta_*
\end{align*} \]

\[\frac{\partial p_z}{\partial \theta_*} = c_1 \frac{\partial p_z}{\partial \theta_1} + c_2 \frac{\partial p_z}{\partial \theta_2} \]

The Jacobian (of \(p \) w.r.t. \(\theta \))
\[J_{ij} = \frac{\partial p_i}{\partial \theta_j} \]

Example for two segment arm
\[J = \begin{bmatrix}
\frac{\partial p_z}{\partial \theta_1} & \frac{\partial p_z}{\partial \theta_2} \\
\frac{\partial p_x}{\partial \theta_1} & \frac{\partial p_x}{\partial \theta_2}
\end{bmatrix} \]
Inverse Kinematics

The Jacobian (of p w.r.t. θ)

$$J = \begin{bmatrix} \frac{\partial p_z}{\partial \theta_1} & \frac{\partial p_z}{\partial \theta_2} \\ \frac{\partial p_x}{\partial \theta_1} & \frac{\partial p_x}{\partial \theta_2} \end{bmatrix}$$

$$\frac{\partial p}{\partial \theta^*_i} = J \cdot \begin{bmatrix} \frac{\partial \theta_1}{\partial \theta^*_i} \\ \frac{\partial \theta_2}{\partial \theta^*_i} \end{bmatrix} = J \cdot \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$

Solving for c_1 and c_2

$$c = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} \quad dp = \begin{bmatrix} dp_z \\ dp_x \end{bmatrix}$$

$$dp = J \cdot c$$

$$c = J^{-1} \cdot dp$$
Inverse Kinematics

Solving for c_1 and c_2

$\begin{align*}
\theta_1 & \quad l_1 \\
\theta_2 & \quad l_2 \\
\theta_3 & \quad p \\
\end{align*}$

$e = dp$

$\begin{align*}
dp &= J \cdot c \\
c &= J^{-1} \cdot dp
\end{align*}$

In the Jacobian invertible?

Inverse Kinematics

- Problems
 - Jacobian may (will!) not always be invertible
 - Use pseudo inverse (SVD)
 - Robust iterative method
 - Jacobian is not constant
 - Nonlinear optimization, but problem is (mostly) well behaved

$J =
\begin{bmatrix}
\frac{\partial p_x}{\partial \theta_1} & \frac{\partial p_x}{\partial \theta_2} \\
\frac{\partial p_y}{\partial \theta_1} & \frac{\partial p_y}{\partial \theta_2} \\
\end{bmatrix} = J(\theta)$

Sunday, November 15, 2009
Inverse Kinematics

• More complex systems
 • More complex joints (prism and ball)
 • More links
 • Other criteria (COM or height)
 • Hard constraints (joint limits)
 • Multiple criteria and multiple chains

• Some issues
 • How to pick from multiple solutions?
 • Robustness when no solutions
 • Contradictory solutions
 • Smooth interpolation
 • Interpolation aware of constraints
Inverse Kinematics

Prism Joints

\[p_z = l_1 + d \]
\[p_x = 0 \]

Inverse Kinematics

Ball Joints

\[p = \hat{r} (\hat{r} \cdot x) + \sin(||r||)(\hat{r} \times x) - \cos(||r||)(\hat{r} \times (\hat{r} \times x)) \]

Sunday, November 15, 2009
Inverse Kinematics

Ball Joints (moving axis)

\[dp = [dr] \cdot e^{[r]} \cdot x = [dr] \cdot p = -[p] \cdot dr \]

That is the Jacobian for this joint

\[
[r] = \begin{bmatrix}
0 & -r_3 & r_2 \\
r_3 & 0 & -r_1 \\
-r_2 & r_1 & 0
\end{bmatrix}
\]

\[r \cdot x = r \times x \]

Inverse Kinematics

Ball Joints (fixed axis)

\[dp = (d\theta) \hat{r} \cdot x = -[x] \cdot \hat{r} d\theta \]

That is the Jacobian for this joint

Sunday, November 15, 2009
Inverse Kinematics

• Many links / joints
 • Need a generic method for building Jacobian

\[\begin{align*}
\mathbf{J} &= \begin{bmatrix} J_3 & J_{2b} & J_{2a} & J_{1b} \end{bmatrix} \\
\mathbf{d} &= \begin{bmatrix} d_3 \\ d_{2b} \\ d_{2a} \\ d_{1b} \end{bmatrix} \\
\mathbf{dp} &\neq \mathbf{J} \cdot \mathbf{dd}
\end{align*} \]
Inverse Kinematics

Transformation from body to world

\[X_{0\leftarrow i} = \prod_{j=1}^{i} X_{(j-1)\leftarrow j} = X_{0\leftarrow 1} \cdot X_{1\leftarrow 2} \cdots \]

Rotation from body to world

\[R_{0\leftarrow i} = \prod_{j=1}^{i} R_{(j-1)\leftarrow j} = R_{0\leftarrow 1} \cdot R_{1\leftarrow 2} \cdots \]

Need to transform Jacobians to common coordinate system (WORLD)

\[J_{i,\text{WORLD}} = R_{0\leftarrow (i-1)} \cdot J_{i} \]
Inverse Kinematics

\[
J = \begin{bmatrix}
R_{0\rightarrow 2b} \cdot J_3(\theta_3, p_3) \\
R_{0\rightarrow 2a} \cdot J_{2b}(\theta_{2b}, X_{2b\rightarrow 3} \cdot p_3) \\
R_{0\rightarrow 1} \cdot J_{2a}(\theta_{2a}, X_{2a\rightarrow 3} \cdot p_3) \\
J_1(\theta_1, X_{1\rightarrow 3} \cdot p_3)
\end{bmatrix}^T
\]

\[
d = \begin{bmatrix}
d_3 \\
d_{2b} \\
d_{2a} \\
d_{1b}
\end{bmatrix}
\]

Note: Each row in the above should be transposed....

\[
dp = J \cdot \dd
\]

Suggested Reading

- Advanced Animation and Rendering Techniques by Watt and Watt
 - Chapters 15 and 16

Sunday, November 15, 2009