Today

- Texture Mapping
 - 2D
 - 3D
 - Procedural
- Bump and Displacement Maps
- Environment Maps
- Shadow Maps
Surface Detail

- Representing all detail in an image with polygons would be cumbersome
2D Texture Mapping of Images

- Use a 2D image and map it to the surface of an object

Example of texture distortion
Texture Coordinates

- Assign coordinates to each vertex
- Within each triangle use linear interpolation
- Correct for distortion!

MIP Map

- Pre-compute filtered versions of the texture
 - A given UV rate is some level of the texture
 - Tri-linear filtering UV × map level
Procedural Textures

- Generate texture based on some function
 - Well suited for “random” textures
 - Often modulate some noise function

Assigning Texture Coordinates

- Map a simple shape onto object by projection
 - Sphere, cylinder, plane, cube
- Assign by hand
- Use some optimization procedure
Repeating Textures

- Image Tiles allow repeating textures
 - Images must be manipulated to allow tiling
 - Often result in visible artifacts
 - There are methods to get around artifacts...

Repeating Textures

- Image Tiles allow repeating textures
 - Images must be manipulated to allow tiling
 - Often result in visible artifacts
 - Artifacts not an issue for artificial textures
Non-Color Textures

Bump Mapping

Images by Paul Baker
www.paulsprojects.net
Bump Mapping

• Add offset to normal
 • Offset is in texture coordinates S,T,N
 • Store normal offsets in RGB image components
 • Should use correctly orthonormal coordinate system

• Normal offsets from gradient of a grayscale image

\[\mathbf{b}(u, v) = [s, t, n](u, v) = \nabla i(u, v) \]

\[\nabla = \left[\frac{\partial}{\partial u}, \frac{\partial}{\partial v} \right]^T \]

Bump Map Example

Catherine Bendebury and Jonathan Michaels
CS 184 Spring 2005
Displacement Maps

- Actually move geometry based on texture map
 - Expensive and difficult to implement in many rendering systems
 - Note silhouette

<table>
<thead>
<tr>
<th>Bump</th>
<th>Displacement</th>
</tr>
</thead>
</table>

Environment Maps

- Environment maps allow crude reflections
- Treat object as infinitesimal
 - Reflection only based on surface normal
- Errors hard to notice for non-flat objects
Environment Maps

(u,v) = (0,0)
(x,y) = (-y, -z)

(u,v) = (1,1)
(x,y) = (y, y)

right face
has $x > |y|, x > |z|$

\[u = \frac{y + x}{2x} \]
\[v = \frac{z + x}{2x} \]
Environment Maps

- Sphere based parameterization
 - Wide angle image or
 - Photo of a silver ball

Images by Paul Haeberli

Environment Maps

- Used in 1985 in movie Interface
- Effect by group from the New York Institute of Technology
Environment Maps

- Used in 1985 in movie *Interface*
- Effect by group from the New York Institute of Technology

Note errors
Shadow Maps

- Pre-render scene from perspective of light source
 - Only render Z-Buffer (the shadow buffer)
- Render scene from camera perspective
 - Compare with shadow buffer
 - If nearer light, if further shadow

From Stamminger and Drettakis
SIGGRAPH 2002

Note: These images don't really go together; see the paper...
Deep Shadow Maps

- Some objects only partially occlude light
 - A single shadow value will not work
 - Similar to transparency in Z-Buffer

From Lokovic and Veach
SIGGRAPH 2000