
CS-184: Computer Graphics

Lecture #9: Scan Conversion
Prof. James O’Brien

University of California, Berkeley
V2009-F-09-1.0

2

Today

• 2D Scan Conversion
• Drawing Lines
• Drawing Curves
• Filled Polygons
• Filling Algorithms

3

Drawing a Line
• Basically, its easy... but for the details

• Lines are a basic primitive that needs to be done well...

4

Drawing a Line
• Basically, its easy... but for the details

• Lines are a basic primitive that needs to be done well...

From “A Procedural Approach to Style for NPR Line Drawing from 3D models,”
by Grabli, Durand, Turquin, Sillion

5

Drawing a Line

6

Drawing a Line

7

Drawing a Line
• Some things to consider

• How thick are lines?
• How should they join up?
• Which pixels are the right ones?

For example:

8

Drawing a Line

Inclusive
Endpoints

9

Drawing a Line

y= m · x+b,x ∈ [x1,x2]

m=
y2− y1
x2− x1

b= y1−m · x1

10

Drawing a Line

Δx= 1
Δy= m ·Δx

x=x1
y=y1
while(x<=x2)
 plot(x,y)
 x++
 y+=Dy

11

Drawing a Line

Δx= 1
Δy= m ·Δx
After rounding

12

Drawing a Line

Δx= 1
Δy= m ·Δx

Accumulation of
roundoff errors

How slow is float-
to-int conversion?

y+= Δy

13

Drawing a Line

|m| ≤ 1 |m| > 1

14

Drawing a Line
void drawLine-Error1(int x1,x2, int y1,y2)
!
 float m = float(y2-y1)/(x2-x1)
 int x = x1
 float y = y1

 while (x <= x2)

 setPixel(x,round(y),PIXEL_ON)

 x += 1
 y += m

Not exact math

Accumulates errors

15

No more rounding

Drawing a Line
void drawLine-Error2(int x1,x2, int y1,y2)
!
 float m = float(y2-y1)/(x2-x1)
 int x = x1
 int y = y1
 float e = 0.0

 while (x <= x2)

 setPixel(x,y,PIXEL_ON)

 x += 1
 e += m
 if (e >= 0.5)
 y+=1
 e-=1.0

16

Drawing a Line
void drawLine-Error3(int x1,x2, int y1,y2)
!
 int x = x1
 int y = y1
 float e = -0.5

 while (x <= x2)

 setPixel(x,y,PIXEL_ON)

 x += 1
 e += float(y2-y1)/(x2-x1)
 if (e >= 0.0)
 y+=1
 e-=1.0

17

Drawing a Line
void drawLine-Error4(int x1,x2, int y1,y2)
!
 int x = x1
 int y = y1
 float e = -0.5*(x2-x1) // was -0.5

 while (x <= x2)

 setPixel(x,y,PIXEL_ON)

 x += 1
 e += y2-y1 // was /(x2-x1)
 if (e >= 0.0) // no change
 y+=1
 e-=(x2-x1) // was 1.0

18

Drawing a Line
void drawLine-Error5(int x1,x2, int y1,y2)
!
 int x = x1
 int y = y1
 int e = -(x2-x1) // removed *0.5

 while (x <= x2)

 setPixel(x,y,PIXEL_ON)

 x += 1
 e += 2*(y2-y1) // added 2*
 if (e >= 0.0) // no change
 y+=1
 e-=2*(x2-x1) // added 2*

19

Drawing a Line
void drawLine-Bresenham(int x1,x2, int y1,y2)
!
 int x = x1
 int y = y1
 int e = -(x2-x1)

 while (x <= x2)

 setPixel(x,y,PIXEL_ON)

 x += 1
 e += 2*(y2-y1)
 if (e >= 0.0)
 y+=1
 e-=2*(x2-x1)

Faster
Not wrong

|m| ≤ 1
x1≤ x2

20

Drawing Curves

y= f (x)

Only one value of y for each value of x...

21

Drawing Curves
• Parametric curves

• Both x and y are a function of some third parameter

y= f (u)
x= f (u)

x= f(u)

u ∈ [u0 . . .u1]

22

Drawing Curves

x= f(u) u ∈ [u0 . . .u1]

23

• Draw curves by drawing line segments
• Must take care in computing end points for lines
• How long should each line segment be?

Drawing Curves

x= f(u) u ∈ [u0 . . .u1]

24

• Draw curves by drawing line segments
• Must take care in computing end points for lines
• How long should each line segment be?
• Variable spaced points

Drawing Curves

x= f(u) u ∈ [u0 . . .u1]

25

Drawing Curves
• Midpoint-test subdivision

|f(umid)− l(0.5)|

26

Drawing Curves
• Midpoint-test subdivision

|f(umid)− l(0.5)|

27

Drawing Curves
• Midpoint-test subdivision

|f(umid)− l(0.5)|

28

Drawing Curves
• Midpoint-test subdivision

• Not perfect
• We need more information for a guarantee...

|f(umid)− l(0.5)|

29

Filled Polygons

30

Filled Polygons

31

Filled Polygons

32

Filled Polygons

33

Filled Polygons

34

Filled Polygons

35

Filled Polygons

36

Filled Polygons

Treat (scan y = vertex y) as (scan y >
vertex y)

37

Filled Polygons

Horizontal edges

38

Filled Polygons

Horizontal edges

39

• “Equality Removal” applies to all vertices

• Both x and y coordinates

Filled Polygons

40

• Final result:

Filled Polygons

41

• Who does this pixel belong to?

Filled Polygons

1

2

3
4

5

6

42

Drawing a Line
• How thick?

• Ends?

Butt

Round

Square

43

Drawing a Line
• Joining?

Ugly Bevel Round Miter

44

Inside/Outside Testing

The Polygon Non-exterior

Non-zero winding Parity

Optimize for Triangles

• Spilt triangle into two parts
• Two edges per part
• Y-span is monotonic

• For each row
• Interpolate span

• Interpolate barycentric
coordinates

45

46

Flood Fill

47

Flood Fill

