CS-184: Computer Graphics

Lecture #5: 3D Transformations and Rotations

Prof. James O'Brien University of California, Berkeley

V2009-F-05

Today

- Transformations in 3D
- Rotations
- Matrices
- Euler angles
- Exponential maps
- Quaternions

3D Transformations

- Generally, the extension from 2D to 3D is straightforward
- Vectors get longer by one
- Matrices get extra column and row
- SVD still works the same way
- Scale, Translation, and Shear all basically the same
- Rotations get interesting

Translations

$$\tilde{\mathbf{A}} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix}$$
 For 2D

$$\tilde{\mathbf{A}} = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

For 3D

$$ilde{\mathbf{A}} = egin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 For 2D

$$\tilde{\mathbf{A}} = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 For 3D (Axis-aligned!)

$$ilde{\mathbf{A}} = egin{bmatrix} 1 & h_{xy} & 0 \ h_{yx} & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}$$
 For 2D

$$\tilde{\mathbf{A}} = \begin{bmatrix} 1 & h_{xy} & h_{xz} & 0 \\ h_{yx} & 1 & h_{yz} & 0 \\ h_{zx} & h_{zy} & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 For 3D (Axis-aligned!)

Shears

$$\tilde{\mathbf{A}} = \begin{bmatrix} 1 & h_{xy} & h_{xz} & 0 \\ h_{yx} & 1 & h_{yz} & 0 \\ h_{zx} & h_{zy} & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
Shears y into x

Rotations

- 3D Rotations fundamentally more complex than in 2D
- 2D: amount of rotation
- 3D: amount and axis of rotation

Rotations

- Rotations still orthonormal
- $Det(\mathbf{R}) = 1 \neq -1$
- Preserve lengths and distance to origin
- 3D rotations DO NOT COMMUTE!
- Right-hand rule DO NOT COMMUTE!
- Unique matrices

Axis-aligned 3D Rotations

• 2D rotations implicitly rotate about a third out of plane axis

Axis-aligned 3D Rotations

• 2D rotations implicitly rotate about a third out of plane axis

$$\mathbf{R} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \qquad \mathbf{R} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Note: looks same as $\tilde{\mathbf{R}}$

Axis-aligned 3D Rotations

$$\mathbf{R}_{s} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix}$$

$$\mathbf{R}_{y} = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{bmatrix}$$

$$\mathbf{R}_{e} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{bmatrix}$$

Axis-aligned 3D Rotations

$$\mathbf{R}_{s} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix}$$

$$\mathbf{R}_{g} = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{bmatrix}$$

$$\mathbf{R}_{e} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\hat{\mathbf{R}}_{e} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Axis-aligned 3D Rotations

$$\mathbf{R}_{s} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix}$$

$$\mathbf{R}_{g} = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{bmatrix}$$

$$\mathbf{R}_{e} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
Also right handed "Zup"
$$\hat{\mathbf{x}}$$

Axis-aligned 3D Rotations

• Also known as "direction-cosine" matrices

$$\mathbf{R}_{\hat{\mathbf{x}}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix} \qquad \mathbf{R}_{\hat{\mathbf{y}}} = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{bmatrix}$$

$$\mathbf{R}_{:} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{bmatrix}$$

14

Arbitrary Rotations

• Can be built from axis-aligned matrices:

$$\mathbf{R} = \mathbf{R}_{\hat{z}} \cdot \mathbf{R}_{\hat{y}} \cdot \mathbf{R}_{\hat{x}}$$

- Result due to Euler... hence called Euler Angles
- Easy to store in vector
- But NOT a vector.

$$\mathbf{R} = \operatorname{rot}(x, y, z)$$

Arbitrary Rotations

$$\mathbf{R} = \mathbf{R}_{\hat{z}} \cdot \mathbf{R}_{\hat{y}} \cdot \mathbf{R}_{\hat{x}}$$

Arbitrary Rotations

- Allows tumbling
- Euler angles are non-unique
- Gimbal-lock
- Moving -vs- fixed axes
- Reverse of each other

- Direct representation of arbitrary rotation
- AKA: axis-angle, angular displacement vector
- ullet Rotate ullet degrees about some axis
- ullet Encode $oldsymbol{ heta}$ by length of vector

$$\theta = |\mathbf{r}|$$

18

Exponential Maps

- ${\boldsymbol \cdot}$ Given vector $\,r$, how to get matrix R
- Method from text:
- I. rotate about x axis to put \mathbf{r} into the x-y plane
- 2. rotate about z axis align \mathbf{r} with the x axis
- 3. rotate θ degrees about x axis
- 4. undo #2 and then #1
- 5. composite together

- Vector expressing a point has two parts
- . \mathbf{X}_{\parallel} does not change
- **X**_rotates like a 2D point

• Rodriguez Formula

$$x' = \hat{\mathbf{r}}(\hat{\mathbf{r}} \cdot \mathbf{x}) + \sin(\theta)(\hat{\mathbf{r}} \times \mathbf{x}) - \cos(\theta)(\hat{\mathbf{r}} \times (\hat{\mathbf{r}} \times \mathbf{x}))$$

Actually a minor variation ... 22

Exponential Maps

• Rodriguez Formula

$$\mathbf{x}' = \hat{\mathbf{r}}(\hat{\mathbf{r}} \cdot \mathbf{x}) \\ +\sin(\theta)(\hat{\mathbf{r}} \times \mathbf{x}) \\ -\cos(\theta)(\hat{\mathbf{r}} \times (\hat{\mathbf{r}} \times \mathbf{x}))$$

Linear in **x**

Actually a minor variation ... 22

• Building the matrix

$$\mathbf{x}' = ((\hat{\mathbf{r}}\hat{\mathbf{r}}^t) + \sin(\theta)(\hat{\mathbf{r}}\times) - \cos(\theta)(\hat{\mathbf{r}}\times)(\hat{\mathbf{r}}\times))\,\mathbf{x}$$

$$(\hat{\mathbf{r}} imes) = egin{bmatrix} 0 & -\hat{r}_z & \hat{r}_y \ \hat{r}_z & 0 & -\hat{r}_x \ -\hat{r}_y & \hat{r}_x & 0 \end{bmatrix}$$

Antisymmetric matrix

 $(\mathbf{a} \times) \mathbf{b} = \mathbf{a} \times \mathbf{b}$

Easy to verify by expansion

23

Exponential Maps

- Allows tumbling
- No gimbal-lock!
- ${\mbox{\ }}$ Orientations are space within $\pi\mbox{\ }$ -radius ball
- Nearly unique representation
- Singularities on shells at 2π
- Nice for interpolation

- Why exponential?
- Recall series expansion of e^{x}

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

25

Exponential Maps

- Why exponential?
- ert · Recall series expansion of e^x
- Euler: what happens if you put in $i\theta$ for x

$$e^{i\theta} = 1 + \frac{i\theta}{1!} + \frac{-\theta^2}{2!} + \frac{-i\theta^3}{3!} + \frac{\theta^4}{4!} + \cdots$$

$$= \left(1 + \frac{-\theta^2}{2!} + \frac{\theta^4}{4!} + \cdots\right) + i\left(\frac{\theta}{1!} + \frac{-\theta^3}{3!} + \cdots\right)$$

$$= \cos(\theta) + i\sin(\theta)$$

• Why exponential?

$$e^{(\hat{\mathbf{r}}\times)\theta} = \mathbf{I} + \frac{(\hat{\mathbf{r}}\times)\theta}{1!} + \frac{(\hat{\mathbf{r}}\times)^2\theta^2}{2!} + \frac{(\hat{\mathbf{r}}\times)^3\theta^3}{3!} + \frac{(\hat{\mathbf{r}}\times)^4\theta^4}{4!} + \cdots$$

But notice that: $(\hat{\mathbf{r}} \times)^3 = -(\hat{\mathbf{r}} \times)$

$$e^{(\hat{\mathbf{r}}\times)\theta} = \mathbf{I} + \frac{(\hat{\mathbf{r}}\times)\theta}{1!} + \frac{(\hat{\mathbf{r}}\times)^2\theta^2}{2!} + \frac{-(\hat{\mathbf{r}}\times)\theta^3}{3!} + \frac{-(\hat{\mathbf{r}}\times)^2\theta^4}{4!} + \cdots$$

27

Exponential Maps

$$e^{(\hat{\mathbf{r}}\times)\theta} = \mathbf{I} + \frac{(\hat{\mathbf{r}}\times)\theta}{1!} + \frac{(\hat{\mathbf{r}}\times)^2\theta^2}{2!} + \frac{-(\hat{\mathbf{r}}\times)\theta^3}{3!} + \frac{-(\hat{\mathbf{r}}\times)^2\theta^4}{4!} + \cdots$$

$$e^{(\hat{\mathbf{r}}\times)\theta} = (\hat{\mathbf{r}}\times)\left(\frac{\theta}{1!} - \frac{\theta^3}{3!} + \cdots\right) + \mathbf{I} + (\hat{\mathbf{r}}\times)^2\left(+\frac{\theta^2}{2!} - \frac{\theta^4}{4!} + \cdots\right)$$

$$e^{(\hat{\mathbf{r}}\times)\theta} = (\hat{\mathbf{r}}\times)\sin(\theta) + \mathbf{I} + (\hat{\mathbf{r}}\times)^2(1-\cos(\theta))$$

Quaternions

- More popular than exponential maps
- Natural extension of $e^{i heta} = \cos(heta) + i \sin(heta)$
- Due to Hamilton (1843)
- Interesting history
- Involves "hermaphroditic monsters"

29

Quaternions

• Uber-Complex Numbers

$$q = (z_1, z_2, z_3, s) = (\mathbf{z}, s)$$

$$q = iz_1 + jz_2 + kz_3 + s$$

$$i^{2} = j^{2} = k^{2} = -1$$

$$ij = k \quad ji = -k$$

$$jk = i \quad kj = -i$$

$$ki = j \quad ik = -j$$

)

Quaternions

• Multiplication natural consequence of defn.

$$\mathbf{q} \cdot \mathbf{p} = (\mathbf{z}_q s_p + \mathbf{z}_p s_q + \mathbf{z}_p \times \mathbf{z}_q , s_p s_q - \mathbf{z}_p \cdot \mathbf{z}_q)$$

Conjugate

$$q^* = (-\mathbf{z}, s)$$

• Magnitude

$$||\mathbf{q}||^2 = \mathbf{z} \cdot \mathbf{z} + s^2 = \mathbf{q} \cdot \mathbf{q}^*$$

Quaternions

Vectors as quaternions

$$v = (\mathbf{v}, 0)$$

• Rotations as quaternions

r =
$$(\hat{\mathbf{r}}\sin\frac{\theta}{2},\cos\frac{\theta}{2})$$
• Rotating a vector

$$x' = r \cdot x \cdot r^*$$

• Composing rotations

$$r = r_1 \cdot r_2$$

 $r = r_1 \cdot r_2$ Compare to Exp. Map

Quaternions

- No tumbling
- No gimbal-lock
- Orientations are "double unique"
- $| \cdot$ Surface of a 3-sphere in 4D | | | r | | = 1
- Nice for interpolation

33

Interpolation Interpolation

Rotation Matrices

- Eigen system
- · One real eigenvalue
- · Real axis is axis of rotation
- Imaginary values are 2D rotation as complex number
- Logarithmic formula

$$(\hat{\mathbf{r}} \times) = \ln(\mathbf{R}) = \frac{\theta}{2\sin\theta} (\mathbf{R} - \mathbf{R}^{\mathsf{T}})$$

 $\theta = \cos^{-1} \left(\frac{\operatorname{Tr}(\mathbf{R}) - 1}{2} \right)$

Similar formulae as for exponential... 35

Rotation Matrices

• Consider:

RI =
$$\begin{bmatrix} r_{xx} & r_{xy} & r_{xz} \\ r_{yx} & r_{yy} & r_{yz} \\ r_{zx} & r_{zy} & r_{zz} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- Columns are coordinate axes after transformation (true for general matrices)
- Rows are original axes in original system (not true for general matrices)

for 36

Note:	
• Rotation stuff in the book is a bit weak luckily you have these nice slides!	37