CS-184: Computer Graphics

Lecture #5: 3D Transformations and
Rotations

Prof. James O'Brien
University of California, Berkeley

Today

* Transformations in 3D

» Rotations

+ Matrices

* Euler angles

* Exponential maps
» Quaternions

3D Transformations

* Generally, the extension from 2D to 3D is straightforward

* Vectors get longer by one
+ Matrices get extra column and row
+ SVD still works the same way

+ Scale, Translation, and Shear all basically the same

* Rotations get interesting

Translations

1 0 ¢,
A=101rzg For 2D
()01_
(100 ¢,
~ (0107
A_001tz For 3D
0001

Scales

For 2D

For 3D
(Axis-aligned!)

co—~ oo o —

S LSO OO KO
SO o O© Lo O

|
1<

SO OO

Shears

For 2D
For 3D
(Axis-aligned!)

= = >,

— £ &S L°e
2 B

— > ()
I — <

Shears

1
Py
h

1
hy
0

hy;
h

<

<
-0 O O

O

Shears y into x

Rotations

* 3D Rotations fundamentally more complex than in 2D

+ 2D: amount of rotation

+ 3D:amount and axis of rotation

VS

2D 3D

Rotations

* Rotations still orthonormal

. Det(R) =1 # —1

* Preserve lengths and distance to origin
* 3D rotations DO NOT COMMUTE!

*Rght-hand rule - DO NOT COMMUTE!

* Unique matrices %

Axis-aligned 3D Rotations

+ 2D rotations implicitly rotate about a third out of plane
axis

O p

Axis-aligned 3D Rotations

+ 2D rotations implicitly rotate about a third out of plane
axis

) cos(B) —sin(6) 0
_ [cos(8) —sin(B) — |sin(0) cos
R= [sin(@) COS(G)} k= [0(6) o(e) (1)]

@ Note: looks same as R a%

Axis-aligned 3D Rotations

1 0 0
R.= [0 cos(B) —sin(0)

0 sin(B) cos(0)

[cos(B) 0 sin(0)] $
R=| 0 1 0

—sin(0) 0 cos(0)

[cos(0) —sin(0)

0 .
R.= [sin(B) cos(6) 0O N —
0 0o 1)Q/

Axis-aligned 3D Rotations

1 0 0
R.= |0 cos(0) —sin(0)
0 sin(B) cos(0) —_ .,
Z is in your face
cos(B) O sin(0) $
R = 0 1 0
| —sin(0) 0 cos(0) |
[cos(0) —sin(0) O] B
R.= |sin(6) cos(B) O L a
|0 0 1] .)@

<

Axis-aligned 3D Rotations

1 0 0
R.= [0 cos(B) —sin(0)
0 sin(B) cos(0) , .,
- = Also right handed “Zup
[cos(B) 0 sin(0)] 2
R = 0 1 0
| —sin(0) O cos(0) $
[cos(0) —sin(0) 0 /g(.
R.= [sin(B) cos(6) 0O —
0 0 1

Axis-aligned 3D Rotations

« Also known as “direction-cosine”’ matrices

Arbrtrary Rotations

+ Can be built from axis-aligned matrices:

R=R:-R; R;
» Result due to Euler... hence called

Euler Angles

* Easy to store in vector

* But NOT a vector:

R =rot(x,y,7)

Arbrtrary Rotations

R=R: R;-R;

Arbrtrary Rotations

+ Allows tumbling
* Euler angles are non-unique
*+ Gimbal-lock

* Moving -vs- fixed axes

» Reverse of each other

Exponential Maps

* Direct representation of arbitrary rotation
* AKA: axis-angle, angular displacement vector
* Rotate 0 degrees about some axis

» Encode 0 by length of vector

6=|r|

>

Exponential Maps

- Given vector I, how to get matrix R

* Method from text:

rotate about x axis to put r into the x-y plane
rotate about z axis align r with the x axis
rotate 0 degrees about x axis

undo #2 and then #1

composite together

A w N —

Exponential Maps

r
\

* Vector expressing a point has two parts
. X

. XJ_rotates like a 2D point

|| does not change

Exponential Maps

s / /
.,x// X |/
/ A /
[. /
N /
X- =Fxx

—x; =Fx (Fxx) X, X

X = x| +X-sin(8) +x cos(B)

X-sin(0)

—x cos(0) 21

Exponential Maps

* Rodriguez Formula

x =1(f-X)
+sin(0) (¢

X
/ \ 3/
X
N , -
Actually a minor variation

Exponential Maps

* Rodriguez Formula

XJ_
' ('7\ .
X
N , -
Actually a minor variation ...,

Exponential Maps

* Building the matrix

x' = ((#tY) + sin(0) (£x) — cos(8) (£ x) (£x))x

0 —7 7
Ex)=|F 0 -5
—F, B O

Antisymmetric matrix
(ax)b=axb
Easy to verify by expansion

Exponential Maps

* Allows tumbling

* No gimbal-lock!

* Orientations are space within TT-radius ball
* Nearly unique representation

* Singularities on shells at 21T

* Nice for interpolation

Exponential Maps

* Why exponential?

. . X
* Recall series expansion of €

2 X3

x—l X X
e = —|—1—!—|-2—!—|—3—!—|‘"‘

Exponential Maps

* Why exponential?
* Recall series expansion of e’
* Euler: what happens if you put in i0 for x

0_ 1,10 -0> —io® o*
e T TR TR,

_(; —0% o4 WA —03
= +2—!—|—4—!+"' +1 F—F?—f—

= cos(0) +isin(0)

Exponential Maps

* Why exponential?

o AoN202 (o303 (oo \4ad
0 _ g, EX)B (Ex)70° (Ex)°0° (Fx)"6
S T TR TR

But notice that: (#x)? = —(#x)

(Fx)0 (Fx)?0* —(tx)0® —(#x)%0*
1! + 2! 3! + 4!

2 N 202 2 3 2 204
@0 _y, EX)0 (x)0° —(Fx)0° —(Fx)0"
S T TR Y R A TR

~ 0 63 62 64
(Fx)0 _ (& Yo ~ 2 vy o
e —(rx)(“ TRl >+I+(r><) (+2! at)

(B0 — (#x) sin(8) + I+ (£x)*(1 —cos(8))

Quaternions

* More popular than exponential maps
- Natural extension of ¢’ = cos(0) + isin(0)
* Due to Hamilton (1843)

* Interesting history

* Involves “hermaphroditic monsters”

Quaternions

+ Uber-Complex Numbers

q— (Z],Z2,Z3,S) — (Z,S)
qa=1iz1+ jzo+kzz+s
ij=k ji=—k

P=P=k=—1 jk=i kj=—i
ki=j ik=—j

Quaternions

* Multiplication natural consequence of defn.
a0 = (ZgSp+2pSg+Zp X2y , SpSq—12Zp-2Zy)
+ Conjugate
*
9 = (_sz)
* Magnitude

o> =22+ =q-4"

Quaternions

* Vectors as quaternions

v = <V,O)
* Rotations as quaternions
0 0

r = (Fsin<,cos <)
* Rotating a vector 2

! *
X —r=*XxX-r

+ Composing rotations

r=—ry-r Compare to Exp. Map

Quaternions

*+ No tumbling

* No gimbal-lock

* Orientations are “double unique”

* Surface of a 3-sphere in 4D ||f|| =1

* Nice for interpolation

Interpolation

34

Rotation Matrices

* Eigen system

+ One real eigenvalue
+ Real axis is axis of rotation

+ Imaginary values are 2D rotation as complex number

* Logarithmic formula

9
~ 2sinB

Similar formulae as for exponential... ..

(tx) = In(R) (R—R")

Rotation Matrices

» Consider:
r.or r_|[1T O

XX Xy Xz

0
RI=|r. r. r_[|1O 1 O
1

yx yy yz

r_ 110 O

rzx rzy zz

+ Columns are coordinate axes after transformation (true
for general matrices)

* Rows are original axes in original system (not true for
general matrices)

Note:

* Rotation stuff in the book is a bit weak... luckily you have
these nice slides!

