CS-I84: Computer Graphics

Lecture \#22: Spring and Mass systems

Today

- Spring and Mass systems
- Distance springs
- Spring dampers
- Edge springs

A Simple Spring

- Ideal zero-length spring

$$
\begin{array}{ll}
\text { O-Wh-O } & \boldsymbol{f}_{a \rightarrow b}=k_{s}(\boldsymbol{b}-\boldsymbol{a}) \\
& \boldsymbol{f}_{b \rightarrow a}=-\boldsymbol{f}_{a \rightarrow b}
\end{array}
$$

- Force pulls points together
- Strength proportional to distance

A Simple Spring

$$
\begin{aligned}
& \text { - Energy potential } \\
& E=1 / 2 k_{S}(\boldsymbol{b}-\boldsymbol{a}) \cdot(\boldsymbol{b}-\boldsymbol{a}) \\
& \boldsymbol{f}_{a \rightarrow b}=k_{s}(\boldsymbol{b}-\boldsymbol{a}) \\
& \boldsymbol{f}_{b \rightarrow a}=-\boldsymbol{f}_{a \rightarrow b} \\
& \boldsymbol{f}_{a}=-\nabla_{a} E=-\left[\frac{\partial E}{\partial a_{x}}, \frac{\partial E}{\partial a_{y}}, \frac{\partial E}{\partial a_{z}}\right] \\
& \text { O-MA-8 }
\end{aligned}
$$

\qquad

Monday, November 24, 2008

Non-Zero Length Springs

Monday, November 24, 2008

Comments on Springs

- Springs with zero rest length are linear
- Springs with non-zero rest length are nonliner
- Force magnitude linear w/ discplacement (from rest length)
- Force direction is non-linear
- Singularity at $\|\boldsymbol{b}-\boldsymbol{a}\|=0$

Damping

- "Mass proportional" damping
$\xrightarrow{f} \stackrel{\dot{a}}{ } \quad \boldsymbol{f}=-k_{d} \dot{\boldsymbol{a}}$
- Behaves like viscous drag on all motion
- Consider a pair of masses connected by a spring
- How to model rusty vs oiled spring
- Should internal damping slow group motion of the pair?
- Can help stability... up to a point
\qquad

8

Monday, November 24, 2008

Damping

- "Stiffness proportional" damping

$$
\text { O-M-○ } \quad \boldsymbol{f}_{a}=-k_{d} \frac{\boldsymbol{b}-\boldsymbol{a}}{\|\boldsymbol{b}-\boldsymbol{a}\|^{2}}(\boldsymbol{b}-\boldsymbol{a}) \cdot(\dot{\boldsymbol{b}}-\dot{\boldsymbol{a}})
$$

- Behaves viscous drag on change in spring length
- Consider a pair of masses connected by a spring
- How to model rusty vs oiled spring
- Should internal damping slow group motion of the pair?

Spring Constants

- Two ways to model a single spring

\qquad

10

Monday, November 24, 2008

Spring Constants

- Constant k_{S} gives inconsistent results with different discretizations
- Change in length is not what we want to measure
- Strain: change in length as fraction of original length

$$
\epsilon=\frac{\Delta l}{l_{0}}
$$

Nice and simple for ID...

Structures from Springs

Structures from Springs

- They behave like what they are (obviously!)

Structures from Springs

- They behave like what they are (obviously!)

\qquad

Structures from Springs

- They behave like what they are (obviously!)

This structure will resist shearing Less bias
Interference between spring sets
This structure still will not resist out-of-plane bending

Structures from Springs

- They behave like what they are (obviously!)

This structure will resist shearing Less bias
 Interference between spring sets
 This structure will resist out-of-plane bending
 Interference between spring sets Odd behavior

How do we set spring constants?
\qquad

\author{

}
\qquad
\qquad \longrightarrow
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

16

From Bridson et al., 2003, also see Grinspun et al., 2003
${ }^{17}$
17

18

Monday, November 24, 2008

Example:Thin Material

\qquad

Suggested Reading

- Physically Based Modeling: Principles and Practice

- Andy Witkin and David Baraff
- http://www-2.cs.cmu.edu/~baraff/sigcourse/index.html
- Grinspun, Hirani, Desbrun, and Peter Schroder, "Discrete Shells," SCA 2003
- Bridson, Marino, and Fedkiw, "Simulation of Clothing with Folds and Wrinkles," SCA 2003
- O’Brien and Hodgins, "Graphical Modeling and Animation of Brittle Fracture," SIGGRAPH 99

Monday, November 24, 2008

