CS-184: Computer Graphics

Lecture #21: Physically Based Animation Intro

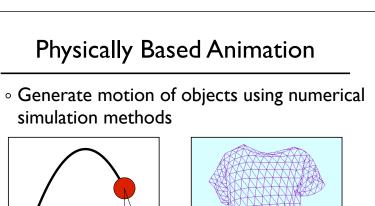
Prof. James O'Brien University of California, Berkeley

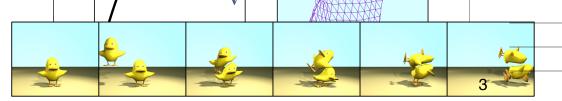
V2007-F-21-1

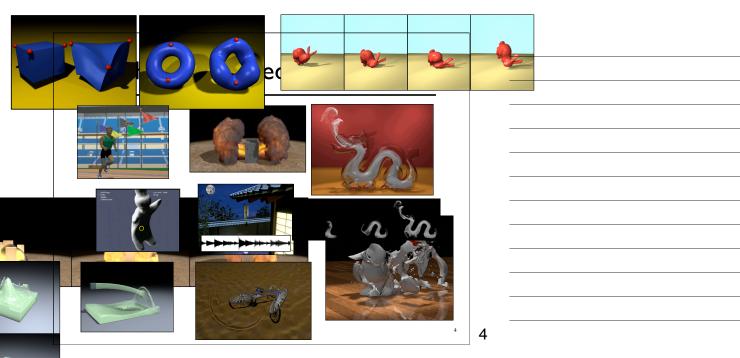
1

Today

- Introduction to Simulation
 - Basic particle systems
 - Time integration (simple version)







Particle Systems

- \circ Single particles are very simple
- Large groups can produce interesting effects
- Supplement basic ballistic rules
 - Collisions
 - Interactions
 - Force fields
 - $\circ \ \mathsf{Springs}$
 - Others...

Karl Sims, SIGGRAPH 1990

5

Particle Systems

- Single particles are very simple
- Large groups can produce interesting effects
- Supplement basic ballistic rules
 - Collisions
 - Interactions
 - Force fields
 - Springs
 - Others...

-

Basic Particles

- ullet Basic governing equation $\ddot{oldsymbol{x}} = rac{1}{m} oldsymbol{f}$ is a sum of a number of things
 - Gravity: constant downward force proportional to mass
 - $\circ\,$ Simple drag: force proportional to negative velocity
 - \circ Particle interactions: particles mutually attract and/or repell $_\circ$ Beware $O(n^2)$ complexity!
 - Force fields
 - Wind forces
 - User interaction

Basic Particles

- \circ Properties other than position
 - Color
 - ∘ Temp
 - \circ Age
- Differential equations also needed to govern these properties
- Collisions and other constrains directly modify position and/or velocity

9

Integration

- Euler's Method
 - Simple
 - Commonly used
 - Very inaccurate
 - Most often goes unstable

$$\mathbf{x}^{t+\Delta t} = \mathbf{x}^t + \Delta t$$

 $\dot{\mathbf{x}}^{t+\Delta t} = \dot{\mathbf{x}}^t + \Delta t$

$$\dot{\boldsymbol{x}}^{t+\Delta t} = \dot{\boldsymbol{x}}^t + \Delta t$$

- \circ For now let's pretend $\boldsymbol{f}=m\boldsymbol{v}$
 - Velocity (rather than acceleration) is a function of force

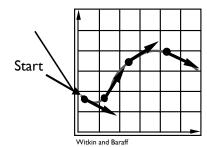
 $\dot{\boldsymbol{x}} = \mathsf{f}(\boldsymbol{x},t)$

Note: Second order ODEs can be turned into first order ODEs using extra variables.

11

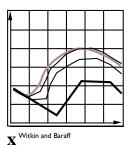
Integration

- \circ For now let's pretend $\boldsymbol{f}=m\boldsymbol{v}$
 - Velocity (rather than acceleration) is a function of force



 $\dot{\boldsymbol{x}} = f(\boldsymbol{x}, t)$

- With numerical integration, errors accumulate
- Euler integration is particularly bad

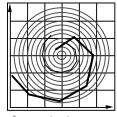


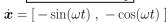
$$x := x + \Delta t \ \mathsf{f}(\boldsymbol{x}, t)$$

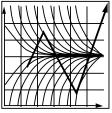
13

Integration

- \circ Stability issues can also arise
 - Occurs when errors lead to larger errors
 - Often more serious than error issues







Witkin and Bara

Modified Euler

$$\boldsymbol{x}^{t+\Delta t} = \boldsymbol{x}^t + \frac{\Delta t}{2} \left(\dot{\boldsymbol{x}}^t + \dot{\boldsymbol{x}}^{t+\Delta t} \right)$$

$$\dot{\boldsymbol{x}}^{t+\Delta t} = \dot{\boldsymbol{x}}^t + \Delta t \ \ddot{\boldsymbol{x}}^t$$

$$oldsymbol{x}^{t+\Delta t} = oldsymbol{x}^t + \Delta t \ \dot{oldsymbol{x}}^t + rac{(\Delta t)^2}{2} \ \ddot{oldsymbol{x}}^t$$

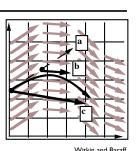
15

Δ

Integration

$\circ \ Midpoint \ method$

- a. Compute half Euler step
- b. Eval. derivative at halfway
- c. Retake step
- Other methods
 - Verlet
 - Runge-Kutta
 - And many others...



X

- Implicit methods
 - Informally (incorrectly) called backward methods
 - Use derivatives in the future for the current step

$$\boldsymbol{x}^{t+\Delta t} = \boldsymbol{x}^t + \Delta t \ \dot{\boldsymbol{x}}^{t+\Delta t}$$

$$\dot{\boldsymbol{x}}^{t+\Delta t} = \dot{\boldsymbol{x}}^t + \Delta t \ \ddot{\boldsymbol{x}}^{t+\Delta t}$$

$$\dot{\boldsymbol{x}}^{t+\Delta t} = \mathsf{V}(\boldsymbol{x}^{t+\Delta t}, \dot{\boldsymbol{x}}^{t+\Delta t}, t+\Delta t)$$

$$\ddot{\boldsymbol{x}}^{t+\Delta t} = \mathsf{A}(\boldsymbol{x}^{t+\Delta t}, \dot{\boldsymbol{x}}^{t+\Delta t}, t + \Delta t)$$

17

Integration

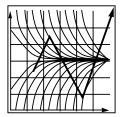
- Implicit methods
 - Informally (incorrectly) called backward methods
 - Use derivatives in the future for the current step

$$\dot{\boldsymbol{x}}^{t+\Delta t} = \dot{\boldsymbol{x}}^t + \Delta t \ \mathsf{V}(\boldsymbol{x}^{t+\Delta t}, \dot{\boldsymbol{x}}^{t+\Delta t}, t + \Delta t)$$

$$\dot{\boldsymbol{x}}^{t+\Delta t} = \dot{\boldsymbol{x}}^t + \Delta t \; \mathsf{A}(\boldsymbol{x}^{t+\Delta t}, \dot{\boldsymbol{x}}^{t+\Delta t}, t + \Delta t)$$

- \circ Solve nonlinear problem for $oldsymbol{x}^{t+\Delta t}$ and $\dot{oldsymbol{x}}^{t+\Delta t}$
- This is fully implicit backward Euler
- Many other implicit methods exist...
- Modified Euler is partially implicit as is Verlet

Temp Slide



Need to draw reverse diagrams....

19

Integration

• Semi-Implicit

• Approximate with linearized equations

$$\mathsf{V}(\boldsymbol{x}^{t+\Delta t}, \dot{\boldsymbol{x}}^{t+\Delta t}) \approx \mathsf{V}(\boldsymbol{x}^t, \dot{\boldsymbol{x}}^t) + \mathbf{A} \cdot (\Delta \boldsymbol{x}) + \mathbf{B} \cdot (\Delta \dot{\boldsymbol{x}})$$

$$\mathsf{A}(\boldsymbol{x}^{t+\Delta t}, \dot{\boldsymbol{x}}^{t+\Delta t}) \approx \mathsf{A}(\boldsymbol{x}^t, \dot{\boldsymbol{x}}^t) + \mathbf{C} \cdot (\Delta \boldsymbol{x}) + \mathbf{D} \cdot (\Delta \dot{\boldsymbol{x}})$$

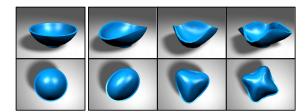
$$egin{bmatrix} egin{bmatrix} m{x}^{t+\Delta t} \ \dot{m{x}}^{t+\Delta t} \end{bmatrix} = egin{bmatrix} m{x}^t \ \dot{m{x}}^t \end{bmatrix} + \Delta t \left(egin{bmatrix} \dot{m{x}}^t \ \ddot{m{x}}^t \end{bmatrix} + egin{bmatrix} m{A} & m{B} \ m{C} & m{D} \end{bmatrix} egin{bmatrix} \Delta m{x} \ \Delta \dot{m{x}} \end{bmatrix}
ight)$$

- Explicit methods can be conditionally stable
 - Depends on time-step and stiffness of system
- Fully implicit can be **un**conditionally stable
 - May still have large errors
- Semi-implicit can be conditionally stable
 - · Nonlinearities can cause instability
 - Generally more stable than explicit
 - Comparable errors as explicit
 - Often show up as excessive damping

21

Integration

- Integrators can be analyzed in modal domain
- System have different component behaviors
- Integrators impact components differently



22

Monday, November 24, 2008

Suggested Reading

- Physically Based Modeling: Principles and Practice
 - Andy Witkin and David Baraff
 - http://www-2.cs.cmu.edu/~baraff/sigcourse/index.html
- Numerical Recipes in C++
 - Chapter 16
- Any good text on integrating ODE's