Today

- Motion Capture
Motion Capture

- Record motion from physical objects
- Use motion to animate virtual objects

Simplified Pipeline:

1. Setup and calibrate equipment
2. Record performance
3. Process motion data
4. Generate animation

Basic Pipeline

From Rose, et al., 1998

Monday, November 24, 2008
What types of objects?

- Human, whole body
- Portions of body
- Facial animation
- Animals
- Puppets
- Other objects

Capture Equipment

- Passive Optical
 - Reflective markers
 - IR (typically) illumination
 - Special cameras
 - Fast, high res., filters
 - Triangulate for positions

Images from Motion Analysis
Capture Equipment

- Passive Optical Advantages
 - Accurate
 - May use many markers
 - No cables
 - High frequency

- Disadvantages
 - Requires lots of processing
 - Expensive systems
 - Occlusions
 - Marker swap
 - Lighting / camera limitations

Capture Equipment

- Active Optical
 - Similar to passive but uses LEDs
 - Blink IDs, no marker swap
 - Number of markers trades off w/ frame rate
Capture Equipment

- Magnetic Trackers
 - Transmitter emits field
 - Trackers sense field
 - Trackers report position and orientation

Capture Equipment

- Electromagnetic Advantages
 - 6 DOF data
 - No occlusions
 - Less post processing
 - Cheaper than optical

- Disadvantages
 - Cables
 - Problems with metal objects
 - Low(er) frequency
 - Limited range
 - Limited number of trackers
Capture Equipment

- Electromechanical

Capture Equipment

- Puppets
Performance Capture

- Many studios regard Motion Capture as evil
 - Synonymous with low quality motion
 - No directive / creative control
 - Cheap
- Performance Capture is different
 - Use mocap device as an expressive input device
 - Similar to digital music and MIDI keyboards

Manipulating Motion Data

- Basic tasks
 - Adjusting
 - Blending
 - Transitioning
 - Retargeting
- Building graphs

Monday, November 24, 2008
Nature of Motion Data

Subset of motion curves from captured walking motion.

Adjusting

- IK on single frames will not work

Gleicher, SIGGRAPH 98
Adjusting

- Define desired motion function in parts

\[m(t) = m_0(t) + d(t) \]

- Select adjustment function from “some nice space”
 - Example C2 B-splines
- Spread modification over reasonable period of time
 - User selects support radius
IK uses control points of the B-spline now

Example:
- position racket
- fix right foot
- fix left toes
- balance

What if adjustment periods overlap?
Blending

- Given two motions make a motion that combines qualities of both
 \[m_\alpha(t) = \alpha m_a(t) + (1 - \alpha) m_b(t) \]

- Assume same DOFs
- Assume same parameter mappings

Blending

- Consider blending slow-walk and fast-walk

Bruderlin and Williams, SIGGRAPH 95
Blending

- Define timewarp functions to align features in motion

\[w_a \rightarrow t \] \[w_b \rightarrow t \]

Normalized time is \(w \)

Blending

- Blend in normalized time

\[m_\alpha(w) = \alpha m_a(w_a) + (1-\alpha)m_b(w_b) \]

- Blend playback rate

\[\frac{dt}{dw} = \alpha \frac{dt}{dw_a} + (1-\alpha)\alpha \frac{dt}{dw_b} \]
Blending

- Blending may still break features in original motions

![Blending Diagram 1]

Add explicit constrains to key points
- Enforce with IK over time

![Blending Diagram 2]
Blending / Adjustment

- Short edits will tend to look acceptable
- Longer ones will often exhibit problems
- Optimize to improve blends / adjustments
 - Add quality metric on adjustment
 - Minimize accelerations / torques
 - Explicit smoothness constraints
 - Other criteria...

Multivariate Blending

- Extend blending to multivariate interpolation

\[
\mathbf{m}(w) = \sum_i \alpha_i(w) \mathbf{m}_i(w)
\]

\[
\sum_i \alpha_i(w) = 1
\]
Multivariate Blending

- Extend blending to multivariate interpolation

Use standard scattered-data interpolation methods

Transitions

- Transition from one motion to another

Perform blend in overlap region

Monday, November 24, 2008
Cyclification

- Special case of transitioning
- Both motions are the same
- Need to modify beginning and end of a motion simultaneously

Transition Graphs

Diagram showing transitions between movements:
- Sit, Stand, Walk, Run, Trip, Dance, Flip

Monday, November 24, 2008
Motion Graphs

- Hand build motion graphs often used in games
 - Significant amount of work required
 - Limited transitions by design
- Motion graphs can also be built automatically

![Diagram of motion graphs]

Motion Graphs

- Similarity metric
 - Measurement of how similar two frames of motion are
 - Based on joint angles or point positions
 - Must include some measure of velocity
 - Ideally independent of capture setup and skeleton
- Capture a “large” database of motions

Monday, November 24, 2008
Motion Graphs

- Compute similarity metric between all pairs of frames
 - Maybe expensive
 - Preprocessing step
 - There may be too many good edges

Motion Graphs

- Random walks
 - Start in some part of the graph and randomly make transitions
 - Avoid dead ends
 - Useful for “idling” behaviors
- Transitions
 - Use blending algorithm we discussed
Motion graphs

- Match imposed requirements
 - Start at a particular location
 - End at a particular location
 - Pass through particular pose
 - Can be solved using dynamic programing
- Efficiency issues may require approximate solution
- Notion of “goodness” of a solution

Suggested Reading

- Fourier principles for emotion-based human figure animation, Unuma, Aniyo, and Takeuchi, SIGGRAPH 95
- Motion signal processing, Bruderlin and Williams, SIGGRAPH 95
- Motion warping, Witkin and Popovic, SIGGRAPH 95
- Efficient generation of motion transitions using spacetime constrains, Rose et al., SIGGRAPH 96
- Retargeting motion to new characters, Gleicher, SIGGRAPH 98

Monday, November 24, 2008
Suggested Reading

- Retargeting motion to new characters, Gleicher, SIGGRAPH 98
- Footskate Cleanup for Motion Capture Editing, Kovar, Schreiner, and Gleicher, SCA 2002.
- Interactive Motion Generation from Examples, Arikan and Forsyth, SIGGRAPH 2002.
- Pushing People Around, Arikan, Forsyth, and O’Brien, unpublished.