CS-184: Computer Graphics Lecture #19: Motion Capture Prof. James O'Brien University of California, Berkeley Today $\circ \ Motion \ Capture$

Motion Capture

- \circ Record motion from physical objects
- \circ Use motion to animate virtual objects

Simplified Pipeline:

3

Basic Pipeline Record Animation From Rose, et al., 1998

What types of objects?

- \circ Human, whole body
- \circ Portions of body
- Facial animation
- Animals
- Puppets
- Other objects

5

Capture Equipment

- Passive Optical
 - Reflective markers
 - IR (typically) illumination
 - Special cameras
 - Fast, high res., filters
 - Triangulate for positions

Images from Motion Analysis

Capptu Equipquipment

Passive Optical Advantages • Passive Optical Advantages

- Accurate May use many markers
- May use many markers High frequency
- No cables
- High frequency

Requires lots of processing

- o Disadvantages ive (>\$100K)
 - o Requires le്ടിയ് ക്രൂറ്റ് Processing
 - Expensive Systems
 Lighting/camera limitations
 - ∘ Occlusions
 - Marker swap
 - Lighting / camera limitations

7

Capture Equipment

Active Optical

- Similar to passive but uses LEDs
- Blink IDs, no marker swap
- Number of markers trades off w/ frame rate

Phase Space

١		
ı	ι	
1	r	

Capture Equipment

• Magnetteptuzelægsipment

- Transmitter emits field
 Magnetic Trackers
 Trackers sense field
 Transmitter emits field
- ∘ Trackers reposition and Orientation where report location and orientation

9

Capture Equipment

• Electromagnetic Advantages

- 6 DOF data
- No occlusions
- Less post processing
- Cheaper than optical

Disadvantages

- Cables
- Problems with metal objects
- Low(er) frequency
- Limited range
- Limited number of trackers

Capture Equipment

• Electromechanical

Analogus

11

Capture Equipment

 $\circ \ Puppets$

Digital Image Design

Performance Capture

- Many studios regard Motion Capture as evil
 - Synonymous with low quality motion
 - No directive / creative control
 - Cheap
- Performance Capture is different
 - Use mocap device as an expressive input device
 - Similar to digital music and MIDI keyboards

13

Manipulating Motion Data

- Basic tasks
 - Adjusting
 - $\circ \ Blending$
 - Transitioning
 - \circ Retargeting
- Building graphs

Adjusting

Why is this task not trivial? Motion Data

Witkin and Popovic, 1995

Subset of motion curves from captured walking motion. From Witkin and Popovic, SIGGRAPH 95

15

Adjusting

Adjusting

IK on single frames will not work

◦ IK on single frames will not work

Fronteicher SIGGRAPH 98

Adjusting

Adjusting
Define desired motion function in parts Define desired function with

17

Adjusting

- Select adjustment function from "some nice space"
 - Example C2 B-splines
- Spread modification over reasonable period of time
 - User selects support radius

Adjusting

IK uses control points of the B-spline now

Example:
position racket
fix right foot
fix left toes
balance

Witkin and Popovic SIGGRAPH 95

19

Adjusting

Witkin and Popovic SIGGRAPH 95

What if adjustment periods overlap?

Blending Blending

$$\boldsymbol{m}_{\alpha}(t) = \alpha \boldsymbol{m}_{a}(t) + (1 - \alpha) \boldsymbol{m}_{b}(t)$$

Assume same DOFs

- Assume same parameter mappings
- Assume same parameter mappings

21

Blending

• Consider blending slow-walk and fast-walk

Bruderlin and Williams, SIGGRAPH 95

Blending

Blending

• Define timewarp functions to align features in motion timewarp functions

Normalized time is w

23

Blending Blending

Blending

o Blending blending

$$oldsymbol{m}_{\alpha}(w) = \alpha oldsymbol{m}_{a}(w_{a}) + (1-\alpha) oldsymbol{m}_{b}(w_{b})$$

Blend playback rate

∘ Blend playback rate

$$\frac{\mathrm{d}t}{\mathrm{d}w} = \alpha \frac{\mathrm{d}t}{\mathrm{d}w_a} + (1 - \alpha)\alpha \frac{\mathrm{d}t}{\mathrm{d}w_b}$$

Blending

Blending may still break features in original motions may still break "features" in original motions

25

Blending

- Add explicat constrains to key points
 - Enfold explicit Ronstraints to key points

Blending / Adjustment

- Short edits will tend to look acceptable
- Longer ones will often exhibit problems
- Optimize to improve blends / adjustments
 - · Add quality metric on adjustment
 - Minimize accelerations / torques
 - Explicit smoothness constraints
 - Other criteria...

27

Multivariate Blending

• Extend blending to multivariate interpolation Extend to multivariate interpolation

Weights are now barycentric coordiantes

Multivariate Blending

• Extend blending to multivariate interpolation Extend to multivariate interpolation

Becomes standard interpolation problem... Use standard scattered-data

Use standard scattered-data interpolation methods

29

Transitions

Transitioning

。 Transitign from ស្ពាខ្លួកស្តេចក្រោះស្រួanother

Cyclification

- Special case of transitioning
- Both motions are the same
- Need to modify beginning and end of a motion simultaneously

31

Transition Graphs

Transition Graphs

Motion Graphs

- Hand build motion graphs often used in games
 - Significant amount of work required
 - · Limited transitions by design
- Motion graphs can also be builts

automatically

33

Motion Graphs

- Similarity metric
 - Measurement of how similar two frames of motion are
 - Based on joint angles or point positions
 - Must include some measure of velocity
 - Ideally independent of capture setup and skeleton
- Capture a "large" database of motions

Motion Graphs

- Compute similarity metric between all pairs of frames
 - Maybe expensive
 - Preprocessing step
 - There may be too many good edges

35

Motion Graphs

- Random walks
 - Start in some part of the graph and randomly make transitions
 - Avoid dead ends
 - Useful for "idling" behaviors
- Transitions
 - Use blending algorithm we discussed

Motion graphs

- Match imposed requirements
 - Start at a particular location
 - End at a particular location
 - Pass through particular pose
 - Can be solved using dynamic programing
 - Efficiency issues may require approximate solution
 - Notion of "goodness" of a solution

37

Suggested Reading

- Fourier principles for emotion-based human figure animation, Unuma, Anjyo, and Takeuchi, SIGGRAPH 95
- Motion signal processing, Bruderlin and Williams, SIGGRAPH 95
- Motion warping, Witkin and Popovic, SIGGRAPH 95
- Efficient generation of motion transitions using spacetime constrains, Rose et al., SIGGRAPH 96
- Retargeting motion to new characters, Gleicher, SIGGRAPH 98
- Verbs and adverbs: Multidimensional motion interpolation, Rose, Cohen, and Bodenheimer, IEEE: Computer Graphics and Applications, v. 18, no. 5, 1998

Suggested Reading

- Retargeting motion to new characters, Gleicher, SIGGRAPH 98
- Footskate Cleanup for Motion Capture Editing, Kovar, Schreiner, and Gleicher, SCA 2002.
- Interactive Motion Generation from Examples, Arikan and Forsyth, SIGGRAPH 2002.
- Motion Synthesis from Annotations, Arikan, Forsyth, and O'Brien, SIGGRAPH 2003.
- Pushing People Around, Arikan, Forsyth, and O'Brien, unpublished.
- Automatic Joint Parameter Estimation from Magnetic Motion Capture Data, O'Brien, Bodenheimer, Brostow, and Hodgins, GI 2000.
- Skeletal Parameter Estimation from Optical Motion Capture Data, Kirk, O'Brien, and Forsyth, CVPR 2005.
- Perception of Human Motion with Different Geometric Models, Hodgins, O'Brien, and Tumblin, IEEE:TVCG 1998.