

Today
- The Rendering Equation
\circ Radiosity Method
\circ Photon Mapping
\circ Ambient Occlusion

Wednesday, November 5, 2008

The Rendering Equation

$L_{s}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\delta\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\left[E\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+\int_{s^{\prime}} p_{x}\left(\mathbf{x}, \mathbf{x}^{\prime \prime}\right) L_{s}\left(\mathbf{x}^{\prime}, \mathbf{x}^{\prime}\right) \frac{\cos \left(\theta^{\prime}\right) \cos \left(\theta^{\prime \prime}\right)}{\left\|\mathbf{x}^{\prime}-\mathbf{x}^{\prime}\right\|^{2}} \mathbf{d \mathbf { x } ^ { \prime }}\right]$

5

5

Wednesday, November 5, 2008

5

5

5

Wednesday, November 5, 2008

The Rendering Equation
$\begin{aligned} L_{s}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)= & \delta\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\left[E\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+\int_{S} \rho_{x^{\prime}}\left(\mathbf{x}, \mathbf{x}^{\prime \prime}\right) L_{s}\left(\mathbf{x}^{\prime}, \mathbf{x}^{\prime \prime}\right) \frac{\cos \left(\theta^{\prime}\right) \cos \left(\theta^{\prime \prime}\right)}{\left\\|\mathbf{x}^{\prime}-\mathbf{x}^{\prime \prime}\right\\|^{2}} \mathrm{~d} \mathbf{x}^{\prime \prime}\right] \\ & \text { sum over every bit of surface in the scene } \end{aligned}$

The Rendering Equation
$L_{s}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\delta\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\left[E\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+\int_{s^{\prime}} \rho_{x}\left(\mathbf{x}, \mathbf{x}^{\prime \prime}\right) L_{s}\left(\mathbf{x}^{\prime}, \mathbf{x}^{\prime \prime}\right) \cdot \frac{\cos \left(\theta^{\prime}\right) \cos \left(\theta^{\prime \prime}\right)}{\left\\|\mathbf{x}^{\prime}-\mathbf{x}^{\prime \prime}\right\\|^{\prime}} \mathbf{d x}^{\prime} \mathbf{x}^{\prime}\right]$

5

5

Wednesday, November 5, 2008

5

5

5

Wednesday, November 5, 2008

Radiosity
- Assume all materials are perfectly
Lambertian (diffuse only, no specularities)
- Removes all dependance on directions
- Reduces dimensionality of lighfield
- Allows a FEM solution (break up into chunks)
- Can also relax assumption slightly...

\qquad
\qquad
\qquad

7

Wednesday, November 5, 2008

9

10

11

12

Wednesday, November 5, 2008

Wednesday, November 5, 2008

Radiosity Method	
- Given the light emitted and surface properties	
- First compute $F_{i j}$, form factors between patches	
- Then solve a linear system to balance energy between all patches	
- Comments:	
- The system is very large	
- It is also sparse (why?)	
- Should be solved with an iterative method - e.g.jacobi or Gauss-Seidel	
- Solution is view independent	

Progressive Radiosity

- If magnitude of eigenvalues of $\mathbf{A}<1$
$(\mathbf{I}-\mathbf{A})^{-1}=\mathbf{I}+\mathbf{A}+\mathbf{A}^{2}+\mathbf{A}^{3}+$
- True for form-factor matrices
$\circ \mathbf{h}^{k+1}=\mathbf{h}^{\mathbf{k}}+\mathbf{u}^{\mathbf{k}+1}$
Idea: let important sources $\mathbf{u}^{k+1}=\mathbf{A u}^{k}$
$\mathbf{h}^{\mathbf{0}}=0 \quad \begin{gathered}\mathbf{u}^{0}=\mathbf{e}\end{gathered} \quad \begin{gathered}\text { of light enerery emit first, } \\ \text { don't even bother with dark things }\end{gathered}$
- Use Gauss-Seidel-like iteration but reorder by
priority

Wednesday, November 5, 2008


```
1 9
```

20

Hierarchical Radiosity
\circ Light smoothes with distance
\circ Compare $1 / h^{2}$ with $1 /\left(h^{2}+d^{2}\right)$ as h gets large
\circ Group patches into hierarchy
\circ Far interactions use lower-res form factors

21

Computing Form Factors	
- Form factors have a geometric meaning	
11	
为	

Wednesday, November 5, 2008
Computing Form Factors
○ Form factors have a geometric meaning
oHemicube" algorithm uses regular scan
conversion

23

Computing Form Factors

- Form factors have a geometric meaning
- "Hemicube" algorithm uses regular scan conversion
- Also computed by ray-based sampling - In practice, computing form factors is the bottleneck24

Photon Mapping
- Lights cast "photons" into environment
\circ. Cast in random directions
\circ Trace into environment
\circ Store records at intersections

25

Wednesday, November 5, 2008

Wednesday, November 5, 2008

31

Photon Mapping
。Final Gather
。 Ray trace scene
－Direct and specular rays as normal
－Diffuse rays traced into photon map
－Diffuse reflection smoothes noise

33

Ambient Occlusion
。A＂hack＂to create more realistic ambient
illumination cheaply
－Assume light from everywhere is partially
blocked by local objects
－Ata point on the surface cast rays at random
。Ambient term is proportional to percent of rays that
hit nothing
－Weight average by cosine of angle with normal
－Take into account how far before occluded

Wednesday，November 5， 2008
Ambient Occlusion

35

36

37

Wednesday, November 5, 2008

