CS-184: Computer Graphics

Lecture \#14:Subdivision

Prol. james O'Brien
University of Calforniz. Berkeley

Subdivision

- Start with:

- Given control points for a curve or surface, find new control points for a sub-section of curve/surface
- Key extension to basic idea:
- Generalize to non-regular surfaces

3

Consider NURBS Surface

4

Wednesday, October 29, 2008

Tensor Product Surface Refinement

\qquad

Bézier Subdivision

Wednesday, October 29, 2008
Bézier Subdivision

$$
\begin{aligned}
& \mathrm{s}_{1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 / 2 & 0 & 0 \\
0 & 0 & 1 / 4 & 0 \\
0 & 0 & 0 & 1 / 8
\end{array}\right] \quad \mathbf{x}(u)=\left[1, u, u^{2}, u^{3}\right] \beta_{\mathrm{Z}} \beta_{\mathrm{Z}}^{-1} \mathbf{S}_{1} \beta_{\mathrm{Z}} \mathbf{P} \\
& \mathbf{x}(u)=\left[1, u, u^{2}, u^{3}\right] \beta_{\mathrm{Z}} \mathbf{H}_{\mathrm{Z} 1} \mathbf{P}
\end{aligned}
$$

Bézier Subdivision

$$
\mathbf{H}_{Z 2}=\left[\begin{array}{cccc}
\frac{1}{8} & \frac{3}{5} & \frac{3}{8} & \frac{1}{8} \\
0 & \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\
0 & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 0 & 1
\end{array}\right] \quad \mathbf{S}_{2}=\left[\begin{array}{cccc}
1 & \frac{1}{2} & \frac{1}{4} & \frac{1}{8} \\
0 & \frac{1}{2} & \frac{1}{2} & \frac{3}{8} \\
0 & 0 & \frac{1}{4} & \frac{3}{8} \\
0 & 0 & 0 & \frac{1}{8}
\end{array}\right]
$$

$$
\mathbf{x}(u, v)=\left[1, u, u^{2}, u^{3}\right] \mathrm{\beta}_{\mathbf{Z}} \mathrm{P}_{\mathrm{Z}}^{\top}\left[1, v, v^{2}, v^{3}\right]^{\top}
$$

4×4 matrix of control points

14

Wednesday, October 29, 2008

15

Regular B-Spline Subdivision

$$
\begin{gathered}
\mathbf{x}(u, v)=\left[1, u, u^{2}, u^{3}\right]_{\mathrm{B}} \mathbf{P} \beta_{\mathrm{B}}^{\top}\left[1, v, v^{2}, v^{3}\right]^{\top} \\
\mathbf{P}_{11}=\mathbf{H}_{\mathrm{B} 1} \mathbf{P} \mathbf{H}_{\mathrm{B} 1}^{\top}
\end{gathered}
$$

\qquad

Regular B-Spline Subdivision

$\mathbf{P}_{11}=\mathbf{H}_{\mathrm{B} 1} \mathbf{P} \mathbf{H}_{\mathrm{B} 1}^{\top}$
$\mathbf{P}_{12}=\mathbf{H}_{\mathrm{B} 1} \mathbf{P} \mathbf{H}_{\mathrm{B} 2}^{\top}$

Wednesday, October 29, 2008

Regular B-Spline Subdivision

$$
\begin{aligned}
& \mathbf{P}_{11}=\mathbf{H}_{\mathrm{B} 1} \mathbf{P} \mathbf{H}_{\mathrm{B} 1}^{\top} 1 \\
& \mathbf{P}_{12}=\mathbf{H}_{\mathrm{B} 1} \mathbf{P} \mathbf{H}_{\mathrm{B} 2}^{\top} \\
& \mathbf{P}_{22}=\mathbf{H}_{\mathrm{B} 2} \mathbf{P} \mathbf{H}_{\mathrm{B} 2}^{\top}
\end{aligned}
$$

\qquad
\square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Wednesday, October 29, 2008

Wednesday, October 29, 2008

Regular B-Spline Subdivision

- Recall that control mesh approaches surface

Regular B-Spline Subdivision

- Limit of subdivision is the surface

Irregular B-Spline Subdivision

- Catmull-Clark Subdivision

Irregular B-Spline Subdivision

- Catmull-Clark Subdivision
- Generalizes regular B-Spine subdivision
- Rules reduce to regular for ordinary vertices/faces
$f=$ average of surrounding vertices
$e=\frac{f_{1}+f_{2}+v_{1}+v_{2}}{4}$
$v=\frac{\bar{f}}{n}+\frac{2 \bar{m}}{n}+\frac{p(n-3)}{n}$
$\bar{m}=$ average of adjacent midpoints
$f=$ average of adjacent face points
$n=$ valence of vertex

Catmull-Clark Subdivision

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

