## CS-I84: Computer Graphics

## Lecture \#12: Curves and Surfaces

Prof.James O'Brien University of California, Berkeley

## Today

- General curve and surface representations
- Splines and other polynomial bases
$\qquad$


## Geometry Representations

- Constructive Solid Geometry (CSG)
- Parametric
- Polygons
- Subdivision surfaces
- Implicit Surfaces
- Point-based Surface
- Not always clear distinctions
- i.e. CSG done with implicits

$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Wednesday, October 15, 2008



8

Wednesday, October 15, 2008

## Geometry Representations

- Various strengths and weaknesses
- Ease of use for design
- Ease/speed for rendering
- Simplicity
- Smoothness
- Collision detection
- Flexibility (in more than one sense)
- Suitability for simulation
- many others...

9

## Parametric Representations

| Curves: | $\boldsymbol{x}=\boldsymbol{x}(u)$ | $\boldsymbol{x} \in \Re^{n}$ | $u \in \Re$ |
| :--- | :--- | :--- | :--- |
| Surfaces: | $\boldsymbol{x}=\boldsymbol{x}(u, v)$ | $\boldsymbol{x} \in \Re^{n}$ | $u, v \in \Re$ |
|  | $\boldsymbol{x}=\boldsymbol{x}(\boldsymbol{u})$ |  | $\boldsymbol{u} \in \Re^{2}$ |
| Volumes: | $\boldsymbol{x}=\boldsymbol{x}(u, v, w)$ | $\boldsymbol{x} \in \Re^{n}$ | $u, v, w \in \Re$ |
|  | $\boldsymbol{x}=\boldsymbol{x}(\boldsymbol{u})$ |  | $\boldsymbol{u} \in \Re^{3}$ |

and so on...
Note: a vector function is really $n$ scalar functions
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

10

## Parametric Rep. Non-unique

- Same curve/surface may have multiple formulae

$\boldsymbol{x}(u)=[u, u]$

$\boldsymbol{x}(u)=\left[u^{3}, u^{3}\right]$
$\qquad$


## Simple Differential Geometry

- Tangent to curve
$\boldsymbol{t}(u)=\left.\frac{\partial \boldsymbol{x}}{\partial u}\right|_{u}$

- Tangents to surface

- Normal of surface

$$
\hat{\boldsymbol{n}}=\frac{\boldsymbol{t}_{u} \times \boldsymbol{t}_{v}}{\left\|\boldsymbol{t}_{u} \times \boldsymbol{t}_{v}\right\|}
$$



- Also: curvature, curve normals, curve bi-normal, others...
- Degeneracies: $\partial \boldsymbol{x} / \partial u=0$ or $\boldsymbol{t}_{u} \times \boldsymbol{t}_{v}=0$


## Discretization

- Arbitrary curves have an uncountable number of parameters

i.e. specify function value at all points on real number line


## Discretization

- Arbitrary curves have an uncountable number of parameters
- Pick complete set of basis functions
- Polynomials, Fourier series, etc.

$$
x(u)=\sum_{i=0}^{\infty} c_{i} \phi_{i}(u)
$$

- Truncate set at some reasonable point

$$
x(u)=\sum_{i=0}^{3} c_{i} \phi_{i}(u)=\sum_{i=0}^{3} c_{i} u^{i}
$$

- Function represented by the vector (list) of $c_{i}$
- The $c_{i}$ may themselves be vectors $\quad x(u)=\sum_{i=0}^{3} c_{i} \phi_{i}(u)$
$\qquad$

14

## Polynomial Basis

## - Power Basis

$x(u)=\sum_{i=0}^{d} c_{i} u^{i}$
$x(u)=\boldsymbol{C} \cdot \boldsymbol{P}^{d}$

The elements of $\mathcal{P}^{d}$ are linearly independant
i.e. no good approximation

$$
u^{k} \not \approx \sum_{i \neq k} c_{i} u^{i}
$$

Skipping something would lead to bad results... odd stiffness

## Specifying a Curve

Given desired values (constraints) how do we determine the coefficients for cubic power basis?


16

## Specifying a Curve

Given desired values (constraints) how do we determine the coefficients for cubic power basis?

$$
\begin{aligned}
& x(0)=c_{0}=x_{0} \\
& x(1)=\Sigma c_{i}=x_{1} \\
& x^{\prime}(0)=c_{1}=x_{0}^{\prime} \\
& x^{\prime}(1)=\Sigma i c_{i}=x_{1}^{\prime}
\end{aligned}
$$



## Specifying a Curve

Given desired values (constraints) how do we determine the coefficients for cubic power basis?



0
$\qquad$

## Specifying a Curve

Given desired values (constraints) how do we determine the coefficients for cubic power basis?


## Specifying a Curve

Given desired values (constraints) how do we determine the coefficients for cubic power basis?

$$
\begin{aligned}
& \mathbf{c}=\beta_{\mathrm{H}} \cdot \mathbf{p} \\
& x(u)=\mathcal{P}^{3} \cdot \mathbf{c}=\mathcal{P}^{3} \boldsymbol{\beta}_{\mathrm{H}} \mathbf{p} \\
& =\left[\begin{array}{l}
1+0 u-3 u^{2}+2 u^{3} \\
0+0 u+3 u^{2}-2 u^{3} \\
0+1 u-2 u^{2}+1 u^{3} \\
0+0 u-1 u^{2}+1 u^{3}
\end{array}\right]
\end{aligned}
$$



$\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1\end{array}$
$\left[\left.\begin{array}{ccc}3 & -2 & 1 \\ -2 & 1 & 1\end{array} \right\rvert\,\right.$
$\qquad$

## Specifying a Curve

Given desired values (constraints) how do we determine the coefficients for cubic power basis?
$\mathbf{c}=\beta_{\mathrm{H}} \cdot \mathbf{p}$
$x(u)=\left[\begin{array}{l}1+0 u-3 u^{2}+2 u^{3} \\ 0+0 u+3 u^{2}-2 u^{3} \\ 0+1 u-2 u^{2}+1 u^{3} \\ 0+0 u-1 u^{2}+1 u^{3}\end{array}\right] \mathbf{p}$


$$
\begin{equation*}
x(u)=\sum_{i=0}^{3} p_{i} b_{i}(u) \tag{}
\end{equation*}
$$

Hermite basis functions21

## Specifying a Curve


Hermite basis functions

$$
x(u)=\sum_{i=0}^{3} p_{i} b_{i}(u)
$$

## Hermite Basis

- Specify curve by
- Endpoint values
- Endpoint tangents (derivatives)
- Parameter interval is arbitrary (most times)
- Don't need to recompute basis functions
- These are cubic Hermite
- Could do construction for any odd degree
- $(d-1) / 2$ derivatives at end points


## Cubic Bézier

- Similar to Hermite, but specify tangents indirectly

$$
\begin{aligned}
& x_{0}=p_{0} \\
& x_{1}=p_{3} \\
& x_{0}^{\prime}=3\left(p_{1}-p_{0}\right) \\
& x_{1}^{\prime}=3\left(p_{3}-p_{2}\right)
\end{aligned}
$$

Note: all the control points are points in space, no tangents.

$\qquad$

## Cubic Bézier

- Similar to Hermite, but specify tangents indirectly


25

## Cubic Bézier

- Plot of Bézier basis functions

$\qquad$


## Changing Bases

- Power basis, Hermite, and Bézier all are still just cubic polynomials
- The three basis sets all span the same space
- Like different axes in $\Re^{X} \Re^{4}$
- Changing basis

$$
\begin{array}{ll}
\mathbf{c}=\boldsymbol{\beta}_{\mathrm{Z}} \mathbf{p}_{\mathrm{Z}} & \mathbf{p}_{\mathrm{Z}}=\boldsymbol{\beta}_{\mathrm{Z}}^{-1} \boldsymbol{\beta}_{\mathrm{H}} \mathbf{p}_{\mathrm{H}} \\
\mathbf{c}=\boldsymbol{\beta}_{\mathrm{H}} \mathbf{p}_{\mathrm{H}} &
\end{array}
$$

$\qquad$
27

## Useful Properties of a Basis

- Convex Hull
- All points on curve inside convex hull of control points
。 $\sum_{i} b_{i}(u)=1 \quad b_{i}(u) \geq 0 \quad \forall u \in \Omega$
- Bézier basis has convex hull property




## Useful Properties of a Basis

- Invariance under class of transforms
- Transforming curve is same as transforming control points
- $\boldsymbol{x}(u)=\sum_{i} \boldsymbol{p}_{i} b_{i}(u) \Leftrightarrow \mathcal{T} \boldsymbol{x}(u)=\sum_{i}\left(\mathcal{T} \boldsymbol{p}_{i}\right) b_{i}(u)$
- Bézier basis invariant for affine transforms
- Bézier basis NOT invariant for perspective transforms
- NURBS are though...


## Useful Properties of a Basis

## - Local support

- Changing one control point has limited impact on entire curve
- Nice subdivision rules
- Orthogonality ( $\int_{\Omega} b_{i}(u) b_{j}(u) \mathrm{d} u=\delta_{i j}$ )
- Fast evaluation scheme
- Interpolation -vs- approximation
$\qquad$


## DeCasteljau Evaluation

- A geometric evaluation scheme for Bézier


${ }^{31}$
31


## Adaptive Tessellation

- Midpoint test subdivision
- Possible problem
- Simple solution if curve basis has convex hull property

If curve inside convex hull and the convex hull is nearly flat: curve is nearly flat and can be drawn as straight line

Better: draw convex hull Works for Bézier because the ends are interpolated


## Bézier Subdivision

- Form control polygon for half of curve by evaluating at $u=0.5$

${ }^{33}$
33

$\qquad$

33

Wednesday, October 15, 2008

## Bézier Subdivision

- Form control polygon for half of curve by evaluating at $u=0.5$

Repeated subdivision makes smaller/flatter segments

Also works for surfaces...
We'll extend this idea later
 on...
${ }^{33}$
s
33
Joining
If you change $a, b$, or $\boldsymbol{c}$ you must change the others
Beyond those three. *LOCAL SUPPORT* ${ }^{0} \Leftrightarrow b=b$
$\mathcal{C}^{1} \Leftrightarrow b-a=c-b$

34
${ }^{35}$

## Tensor-Product Surfaces

- Surface is a curve swept through space
- Replace control points of curve with other curves

$$
\begin{array}{ll}
x(u, v)=\sum_{i} p_{i} b_{i}(u) & \Sigma_{i}(v)=\Sigma_{j} p_{j i} b_{j}(v) \\
\Sigma_{i} q_{i}(v) b_{i}(u) & b_{i j}(u, v)=b_{i}(u) b_{j}(v) \\
x(u, v)=\sum_{i j} p_{i j} b_{i}(u) b_{j}(v) \\
x(u, v)=\sum_{i j} p_{i j} b_{i j}(u, v)
\end{array}
$$




Wednesday, October 15, 2008

## Adaptive Tessellation

- Given surface patch
- If close to flat: draw it
- Else subdivide 4 ways


41

## Adaptive Tessellation

- Avoid cracking

$\qquad$

42

Wednesday, October 15, 2008

## Adaptive Tessellation

- Avoid cracking


Cracks may be okay in some contexts...

## Adaptive Tessellation

- Avoid cracking

$\qquad$


## Adaptive Tessellation

- Avoid cracking


Test interior and boundary of patch Split boundary based on boundary test Table of polygon patterns May wish to avoid "slivers"
$\qquad$

## Adaptive Tessellation

- Triangle Based Method (no cracks)

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## Adaptive Tessellation

- Triangle Based Method (no cracks)


47

## Adaptive Tessellation

- Triangle Based Method (no cracks)


48

Wednesday, October 15, 2008

## Adaptive Tessellation

- Triangle Based Method (no cracks)


$$
\left\|B\left(\left(u_{1}+u_{2}\right) / 2\right)-\left(x_{1}+x_{2}\right) / 2\right\|<\tau \text { ? }
$$

## Adaptive Tessellation

- Triangle Based Method (no cracks)


Center test tends to generate slivers. Often better to leave it out. $\square$


51



