CS-184: Computer Graphics

Lecture #12: Curves and Surfaces

Prof. James O'Brien University of California, Berkeley

V2008-F-12-

1

Today

- General curve and surface representations
- \circ Splines and other polynomial bases

- ∘ Constructive Solid Geometry (CSG)
- Parametric
 - Polygons
 - Subdivision surfaces
- Implicit Surfaces
- Point-based Surface
- \circ Not always clear distinctions
 - i.e. CSG done with implicits

3

Geometry Representations

Object made by CSG Converted to polygons

Object made by CSG Converted to polygons Converted to implicit surface

5

Geometry Representations

CSG on implicit surfaces

Point-based surface descriptions

Ohtake, et al., SIGGRAPH 2003

7

Geometry Representations

Subdivision surface (different levels of refinement)

Images from Subdivision.org

- Various strengths and weaknesses
 - Ease of use for design
 - Ease/speed for rendering
 - Simplicity
 - Smoothness
 - Collision detection
 - Flexibility (in more than one sense)
 - Suitability for simulation
 - many others...

9

Parametric Representations

Curves: $\boldsymbol{x} = \boldsymbol{x}(u)$ $\boldsymbol{x} \in \Re^n$ $u \in \Re$

Surfaces: $\mathbf{x} = \mathbf{x}(u, v)$ $\mathbf{x} \in \Re^n$ $u, v \in \Re$ $\mathbf{x} = \mathbf{x}(\mathbf{u})$ $\mathbf{u} \in \Re^2$

 $\begin{array}{ll} \text{Volumes:} & \boldsymbol{x} = \boldsymbol{x}(u,v,w) & \boldsymbol{x} \in \Re^n & u,v,w \in \Re \\ & \boldsymbol{x} = \boldsymbol{x}(\boldsymbol{u}) & \boldsymbol{u} \in \Re^3 \\ \end{array}$

and so on...

Note: a vector function is really n scalar functions

Parametric Rep. Non-unique

 Same curve/surface may have multiple formulae

11

Simple Differential Geometry

• Tangent to curve

$$\boldsymbol{t}(u) = \frac{\partial \boldsymbol{x}}{\partial u}\bigg|_{u}$$

$$\left. \boldsymbol{t}_{\boldsymbol{u}}(\boldsymbol{u},\boldsymbol{v}) = \frac{\partial \boldsymbol{x}}{\partial \boldsymbol{u}} \right|_{\boldsymbol{u},\boldsymbol{v}} \qquad \left. \boldsymbol{t}_{\boldsymbol{v}}(\boldsymbol{u},\boldsymbol{v}) = \frac{\partial \boldsymbol{x}}{\partial \boldsymbol{v}} \right|_{\boldsymbol{u},\boldsymbol{v}}$$

Normal of surface

$$\hat{\boldsymbol{n}} = \frac{\boldsymbol{t}_u \times \boldsymbol{t}_v}{||\boldsymbol{t}_u \times \boldsymbol{t}_v||}$$

- Also: curvature, curve normals, curve bi-normal, others...
- Degeneracies: $\partial x/\partial u = 0$ or $t_u \times t_v = 0$

Discretization

Arbitrary curves have an uncountable number of parameters

i.e. specify function value at all points on real number line

13

Discretization

- Arbitrary curves have an uncountable number of parameters
- Pick complete set of basis functions
 - Polynomials, Fourier series, etc.

$$x(u) = \sum_{i=0}^{\infty} c_i \phi_i(u)$$

• Truncate set at some reasonable point

$$x(u) = \sum_{i=0}^{3} c_i \phi_i(u) = \sum_{i=0}^{3} c_i u^i$$

- \circ Function represented by the vector (list) of c_i
- \circ The $^{\mathit{C}_{i}}$ may themselves be vectors

$$\boldsymbol{x}(u) = \sum_{i=0}^{3} \boldsymbol{c}_{i} \phi_{i}(u)$$

Polynomial Basis

Power Basis

$$x(u) = \sum_{i=0}^{d} c_i u^i$$

$$C = [c_0, c_1, c_2, \dots, c_d]$$

$$x(u) = C \cdot \mathcal{P}^d$$

$$\mathcal{P}^d = [1, u, u^2, \dots, u^d]$$

The elements of \mathcal{P}^d are linearly independent i.e. no good approximation

$$u^k \not\approx \sum_{i \neq k} c_i \, u^i$$

Skipping something would lead to bad results... odd stiffness

15

Specifying a Curve

Given desired values (constraints) how do we determine the coefficients for cubic power basis?

For now, assume
$$u_0 = 0$$
 $u_1 = 1$

Specifying a Curve

Given desired values (constraints) how do we determine the coefficients for cubic power basis?

$$x(0) = c_0 = x_0$$

 $x(1) = \sum c_i = x_1$
 $x'(0) = c_1 = x'_0$

 $x'(1) = \sum i c_i = x'_1$

17

Specifying a Curve

Given desired values (constraints) how do we determine the coefficients for cubic power basis?

$$\begin{bmatrix} x_0 \\ x_1 \\ x'_0 \\ x'_1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 3 \end{bmatrix} \cdot \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{bmatrix}$$

$$\mathbf{p} = \mathbf{B} \cdot \mathbf{c}$$

1	8

Specifying a Curve

Given desired values (constraints) how do we determine the coefficients for cubic power basis?

$$\mathbf{c} = \beta_{\text{H}} \cdot \mathbf{p}$$

$$\beta_{\text{H}} = \mathbf{B}^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -3 & 3 & -2 & 1 \\ 2 & -2 & 1 & 1 \end{bmatrix}$$

19

Specifying a Curve

Given desired values (constraints) how do we determine the coefficients for cubic power basis?

$$\mathbf{c} = \beta_{\mathrm{H}} \cdot \mathbf{p}$$

$$x(u) = \mathcal{P}^3 \cdot \mathbf{c} = \mathcal{P}^3 \beta_{\mathrm{H}} \mathbf{p}$$

$$= \begin{bmatrix} 1 + 0u - 3u^2 + 2u^3 \\ 0 + 0u + 3u^2 - 2u^3 \\ 0 + 1u - 2u^2 + 1u^3 \\ 0 + 0u - 1u^2 + 1u^3 \end{bmatrix} \mathbf{p}$$

$$\boldsymbol{\beta}_{u} = \mathbf{B}^{-1} = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -3 & 3 & -2 & 1 \\ 2 & -2 & 1 & 1 \end{vmatrix}$$

Specifying a Curve

Given desired values (constraints) how do we determine the coefficients for cubic power basis?

$$\mathbf{c} = \beta_{\mathsf{H}} \cdot \mathbf{p}$$

$$x(u) = \begin{bmatrix} 1 + 0u - 3u^2 + 2u^3 \\ 0 + 0u + 3u^2 - 2u^3 \\ 0 + 1u - 2u^2 + 1u^3 \\ 0 + 0u - 1u^2 + 1u^3 \end{bmatrix} \mathbf{p}$$

$$x(u) = \sum_{i=0}^{3} p_i b_i(u)$$

Hermite basis functions

21

Specifying a Curve

Given desired values (constraints) how do we determine the coefficients for cubic power basis?

 $x(u) = \sum_{i=0}^{3} p_i b_i(u)$

Hermite basis functions

Hermite Basis

- Specify curve by
 - Endpoint values
 - Endpoint tangents (derivatives)
- Parameter interval is arbitrary (most times)
 - Don't need to recompute basis functions
- These are cubic Hermite
 - · Could do construction for any odd degree
 - $\circ (d-1)/2$ derivatives at end points

23

Cubic Bézier

 Similar to Hermite, but specify tangents indirectly

$$x_0 = p_0$$

 $x_1 = p_3$
 $x'_0 = 3(p_1 - p_0)$
 $x'_1 = 3(p_3 - p_2)$

Note: all the control points are points in space, no tangents.

Cubic Bézier

 Similar to Hermite, but specify tangents indirectly

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 3 \end{bmatrix} \mathbf{c} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ -3 & 3 & 0 & 0 \\ 0 & 0 & -3 & 3 \end{bmatrix} \mathbf{p}$$

$$\mathbf{c} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -3 & 3 & 0 & 0 \\ 3 & -6 & 3 & 0 \\ -1 & 3 & -3 & 1 \end{bmatrix} \mathbf{p}$$

25

Cubic Bézier

• Plot of Bézier basis functions

Changing Bases

- o Power basis, Hermite, and Bézier all are still just cubic polynomials
 - The three basis sets all span the same space
 - \circ Like different axes in \Re^{X} \Re^{4}
- Changing basis

$$\mathbf{c} = \boldsymbol{\beta}_{\mathsf{Z}} \, \mathbf{p}_{\mathsf{Z}}$$

$$\mathbf{p}_{\mathrm{Z}} = \boldsymbol{eta}_{\mathrm{Z}}^{-1} \, \boldsymbol{eta}_{\mathrm{H}} \, \mathbf{p}_{\mathrm{H}}$$

$$\mathbf{c} = \boldsymbol{\beta}_{H} \, \mathbf{p}_{H}$$

27

Useful Properties of a Basis

- Convex Hull
 - All points on curve inside convex hull of control points

$$\sum_{i} b_i(u) = 1$$
 $b_i(u) \ge 0$ $\forall u \in \Omega$

Bézier basis has convex hull property

Useful Properties of a Basis

- Invariance under class of transforms
 - Transforming curve is same as transforming control points
 - $\boldsymbol{x}(u) = \sum_{i} \boldsymbol{p}_i b_i(u) \Leftrightarrow \boldsymbol{\mathcal{T}} \boldsymbol{x}(u) = \sum_{i} (\boldsymbol{\mathcal{T}} \boldsymbol{p}_i) b_i(u)$
 - Bézier basis invariant for affine transforms
 - Bézier basis NOT invariant for perspective transforms
 - NURBS are though...

29

Useful Properties of a Basis

- Local support
 - · Changing one control point has limited impact on entire curve
 - Nice subdivision rules
 - Orthogonality ($\int_{\Omega} b_i(u)b_j(u)\mathrm{d}u = \delta_{ij}$)
 - Fast evaluation scheme
 - Interpolation -vs- approximation

DeCasteljau Evaluation

• A geometric evaluation scheme for Bézier

31

Adaptive Tessellation

 $\circ \ Midpoint \ test \ subdivision$

• Possible problem

 \circ Simple solution if curve basis has $\emph{convex hull}$ property

If curve inside convex hull and the convex hull is nearly flat: curve is nearly flat and can be drawn as straight line

Better: draw convex hull Works for Bézier because the ends are interpolated

Bézier Subdivision

 \circ Form control polygon for half of curve by evaluating at $u{=}0.5$

33

Bézier Subdivision

 \circ Form control polygon for half of curve by evaluating at u=0.5

Bézier Subdivision

 \circ Form control polygon for half of curve by evaluating at $u{=}0.5$

Repeated subdivision makes smaller/flatter segments

Also works for surfaces...

We'll extend this idea later on...

33

Joining

$$\mathcal{C}^0 \Leftrightarrow oldsymbol{b} = oldsymbol{b}$$

$$c^1 \Leftrightarrow b - a = c - b$$

$$\mathcal{G}^1 \Leftrightarrow \frac{\boldsymbol{b} - \boldsymbol{a}}{||\boldsymbol{b} - \boldsymbol{a}||} = \frac{\boldsymbol{c} - \boldsymbol{b}}{||\boldsymbol{c} - \boldsymbol{b}||}$$

If you change a, b, or c you must change the others

But if you change a, b, or c you do not have to change beyond those three. *LOCAL SUPPORT*

"Hump" Functions

 Constraints at joining can be built in to make new basis

35

Tensor-Product Surfaces

- Surface is a curve swept through space
- Replace control points of curve with other curves

$$x(u, v) = \sum_{i} p_{i} b_{i}(u)$$

$$\sum_{i} q_{i}(v) b_{i}(u) \qquad q_{i}(v) = \sum_{j} p_{ji} b_{j}(v)$$

$$x(u,v) = \sum_{ij} p_{ij}b_i(u)b_j(v)$$
 $b_{ij}(u,v) = b_i(u)b_j(v)$

$$x(u,v) = \sum_{ij} p_{ij}b_{ij}(u,v)$$

Adaptive Tessellation

- $\circ \ Given \ surface \ patch$
 - If close to flat: draw it
 - Else subdivide 4 ways

41

Adaptive Tessellation

Avoid cracking

43

Adaptive Tessellation

Avoid cracking

Adaptive Tessellation

Avoid cracking

Test interior and boundary of patch Split boundary based on boundary test Table of polygon patterns May wish to avoid "slivers"

45

Adaptive Tessellation

Triangle Based Method (no cracks)

Adaptive Tessellation • Triangle Based Method (no cracks) u_3 u_1 u_2 x_1

47

Adaptive Tessellation • Triangle Based Method (no cracks) $u_1 + u_2 / 2$ $u_1 + u_2 / 2$ $B((u_1 + u_2) / 2)$ $(x_1 + x_2) / 2$ x_3

Adaptive Tessellation

Triangle Based Method (no cracks)

49

Adaptive Tessellation

Triangle Based Method (no cracks)

Center test tends to generate slivers.
Often better to leave it out.

51

Adaptive Tessellation Output Output

