CS-184: Computer Graphics

Lecture #11: Texture and Other Maps

Prof. James O'Brien University of California, Berkeley

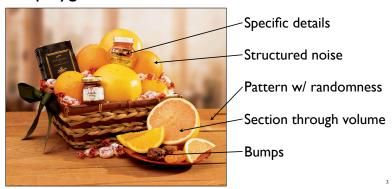
V2008-F-11-

1

Today

- $\circ \ \, \textbf{Texture} \, \, \textbf{Mapping}$
 - 。 2D
 - 。3D
 - Procedural
- \circ Bump and Displacement Maps
- Environment Maps
- Shadow Maps

Surface Detail


 Representing all detail in an image with polygons would be cumbersome

3

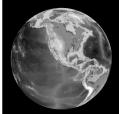
Surface Detail

 Representing all detail in an image with polygons would be cumbersome

2D Texture Mapping of Images

 Use a 2D image and map it to the surface of an object

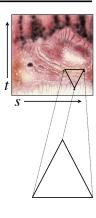

Bump (11/1/1/1)



4

2D Texture Mapping of Images

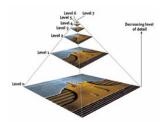
 \circ Example of texture distortion



C

Texture Coordinates

- Assign coordinates to each vertex
- Within each triangle use linear interpolation
- Correct for distortion!



6

MIP Map

- \circ Pre-compute filtered versions of the texture
 - A given UV rate is some level of the texture
 - Tri-linear filtering UV × map level

Procedural Textures

- Generate texture based on some function
 - Well suited for "random" textures
 - Often modulate some noise function

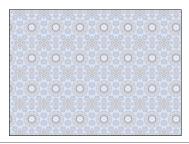
8

Assigning Texture Coordinates

- Map a simple shape onto object by projection
 - Sphere, cylinder, plane, cube
- \circ Assign by hand
- \circ Use some optimization procedure

Repeating Textures

- Image Tiles allow repeating textures
 - Images must be manipulated to allow tilling
 - Often result in visible artifacts
 - There are methods to get around artifacts....



10

Repeating Textures

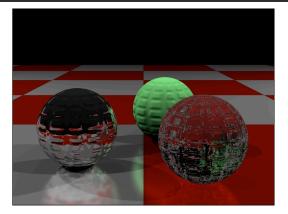
- Image Tiles allow repeating textures
 - Images must be manipulated to allow tilling
 - Often result in visible artifacts
 - Artifacts not an issue for artificial textures

Non-Color Textures Color Craked by : Kerry & Hoorg. email : kerrigorier@fromal.com

12

Bump Mapping No bump mapping With bump mapping Images by Paul Baker www.paulsprojects.net

Bump Mapping


- Add offset to normal
 - Offset is in texture coordinates S,T,N
 - Store normal offsets in RGB image components
 - Should use correctly orthonormal coordinate system
- Normal offsets from gradient of a grayscale image

$$\bullet$$
 b $(u,v) = [s,t,n](u,v) = \nabla i(u,v)$

$$\circ \nabla = \left[\frac{\partial}{\partial u}, \frac{\partial}{\partial v}\right]^{\mathsf{T}}$$

14

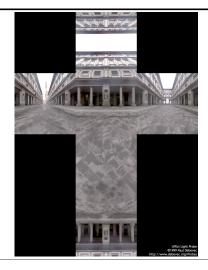
Bump Map Example

Catherine Bendebury and Jonathan Michaels CS 184 Spring 2005

Displacement Maps

- Actually move geometry based on texture map
 - Expensive and difficult to implement in many rendering systems
 - Note silhouette

Bump

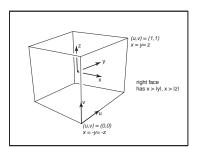

Displacement

16

Environment Maps

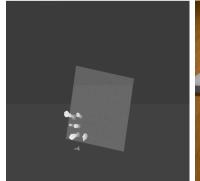
- Environment maps allow crude reflections
- Treat object as infinitesimal
 - Reflection only based on surface normal
- Errors hard to notice for non-flat objects

Environment Maps



18

Environment Maps


$$u = \frac{y + x}{2x}$$

$$v = \frac{z + x}{2x}$$

Shadow Maps

- Pre-render scene from perspective of light source
 - Only render Z-Buffer (the shadow buffer)
- Render scene from camera perspective
 - Compare with shadow buffer
 - If nearer light, if further shadow

From Stamminger and Drettakis

Deep Shadow Maps

- Some objects only partially occlude light
 - A single shadow value will not work
 - Similar to transparency in Z-Buffer

From Lokovic and Veach SIGGRAPH 2000