CS-I84: Computer Graphics

Lecture \#IO: Clipping and

 Hidden SurfacesProf. James O'Brien
University of California, Berkeley

Today

- Clipping
- Clipping to view volume
- Clipping arbitrary polygons
- Hidden Surface Removal
- Z-Buffer
- BSP Trees
- Others

Clipping

- Stuff outside view volume should not be drawn
- Too close: obscures view

Clipping

- Stuff outside view volume should not be

 drawn- Too close: obscures view
- Too far:
- Complexity
- Z-buffer problems
- Too high/low/right/left:
- Memory errors
- Broken algorithms
- Complexity
\qquad

Tuesday, October 7, 2008

Clipping Line to Line/Plane

Line segment to be clipped
$\mathbf{x}(t)=\mathbf{a}+t(\mathbf{b}-\mathbf{a})$

Line/plane that clips it
$\hat{\mathbf{n}} \cdot \mathbf{x}-\hat{\mathbf{n}} \cdot \mathbf{r}=0$

Clipping Line to Line/Plane

\qquad

Tuesday, October 7, 2008

Clipping Line to Line/Plane

Clipping Line to Line/Plane

- Segment may be on

 one side$t \notin[0 \ldots 1]$

- Lines may be parallel

$\hat{\mathbf{n}} \cdot \mathbf{d}=0$

Clipping Line to Line/Plane

$$
\begin{aligned}
& \text { Segment may be on } \\
& \text { one side } \\
& t \notin[0 \ldots 1] \\
& \text { - Lines may be } \\
& \text { parallel } \\
& \hat{\mathbf{n}} \cdot \mathbf{d}=0 \\
& |\hat{\mathbf{n}} \cdot \mathbf{d}| \leq \varepsilon \quad \text { (Recall comments about numerical issues) } \\
& \hline \hat{\mathbf{n}} \cdot \mathbf{d} \\
& \hline
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Triangle Clip/Split

Polygon Clip to Convex Domain

- Convex domain defined by collection of planes (or lines or hyper-planes)
- Planes have outward pointing normals
- Clip against each plane in turn
- Check for early/trivial rejection

Polygon Clip to Convex Domain

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Polygon Clip to Convex Domain

\qquad \longrightarrow
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Tuesday, October 7, 2008

Polygon Clip to Convex Domain

${ }^{12}$

Polygon Clip to Convex Domain

- Sutherland-Hodgman algorithm
- Basically edge walking
- Clipping done often... should be efficient
- Liang-Barsky parametric space algorithm
- See text for clipping in 4D homogenized coordinates
\qquad

14

General Polygon Clipping

Tuesday, October 7, 2008

Hidden Surface Removal

- True 3D to 2D projection would put every thing overlapping into the view plane.
- We need to determine what's in front and display only that.

${ }^{16}$

Z-Buffers

- Add extra depth channel to image
- Write Z values when writing pixels
- Test Z values before writing

17

Tuesday, October 7, 2008

Z-Buffers

- Benefits

- Easy to implement
- Works for most any geometric primitive
- Parallel operation in hardware
- Limitations
- Quantization and aliasing artifacts
- Overfill
- Transparency does not work well

Z-Buffers

- Transparency requires partial sorting:

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
19

Tuesday, October 7, 2008

\qquad

A-Buffers

- Store sorted list of "fragments" at each pixel
- Draw all opaque stuff first then transparent
- Stuff behind full opacity gets ignored
- Nice for antialiasing...
\qquad

Scan-line Algorithm

- Assume polygons don't intersect
- Each time an edge is crossed determine who's on top

\qquad

Painter's Algorithm

- Sort Polygons Front-to-Back
- Draw in order
- Back-to-Front works also, but wasteful
- How to sort quickly?
- Intersecting polygons?
- Cycles?

23

BSP-Trees

- Binary Space Partition Trees

- Split space along planes
- Allows fast queries of some spatial relations
- Simple construction algorithm
- Select a plane as sub-tree root
- Everything on one side to one child
- Everything on the other side to other child
- Use random polygon for splitting plane

\qquad

Tuesday, October 7, 2008

